强化学习算法 DDPG 解决 CartPole 问题,代码逐条详解

本文内容源自百度强化学习 7 日入门课程学习整理
感谢百度 PARL 团队李科浇老师的课程讲解

使用DDPG解决连续控制版本的CartPole问题,给小车一个力(连续量)使得车上的摆杆倒立起来。
强化学习算法 DDPG 解决 CartPole 问题,代码逐条详解_第1张图片

文章目录

  • 一、安装依赖
  • 二、导入依赖
  • 三、设置超参数
  • 四、搭建Model、Algorithm、Agent架构
    • 4.1 Model
    • 4.2 Algorithm
    • 4.3 Agent
  • 五、连续控制版本的CartPole环境
  • 六、设置经验池
  • 七、Training && Test(训练&&测试)
  • 八、创建环境和Agent,创建经验池,启动训练,保存模型

一、安装依赖

!pip install gym
!pip install paddlepaddle==1.6.3
!pip install parl==1.3.1
# 检查依赖包版本是否正确
!pip list | grep paddlepaddle
!pip list | grep parl

二、导入依赖

import gym
import numpy as np
from copy import deepcopy

import paddle.fluid as fluid
import parl
from parl import layers
from parl.utils import logger

三、设置超参数

ACTOR_LR = 1e-3  # Actor网络的 learning rate
CRITIC_LR = 1e-3  # Critic网络的 learning rate

GAMMA = 0.99      # reward 的衰减因子
TAU = 0.001       # 软更新的系数
MEMORY_SIZE = int(1e6)                  # 经验池大小
MEMORY_WARMUP_SIZE = MEMORY_SIZE // 20  # 预存一部分经验之后再开始训练
BATCH_SIZE = 128
REWARD_SCALE = 0.1   # reward 缩放系数
NOISE = 0.05         # 动作噪声方差

TRAIN_EPISODE = 6000 # 训练的总episode数

四、搭建Model、Algorithm、Agent架构

Agent把产生的数据传给algorithmalgorithm根据model的模型结构计算出Loss,使用SGD或者其他优化器不断的优化,PARL这种架构可以很方便的应用在各类深度强化学习问题中。

4.1 Model

Model用来定义前向(Forward)网络,用户可以自由的定制自己的网络结构

class Model(parl.Model):
    def __init__(self, act_dim):
        self.actor_model = ActorModel(act_dim)
        self.critic_model = CriticModel()

    def policy(self, obs): # 链接 ActorModel 下的该方法
        return self.actor_model.policy(obs)

    def value(self, obs, act): # 链接 CriticModel 下的该方法
        return self.critic_model.value(obs, act)

    def get_actor_params(self):
        return self.actor_model.parameters() # 基类中的方法,获取参数


class ActorModel(parl.Model): # 演员模型
    def __init__(self, act_dim):
        hid_size = 100

        self.fc1 = layers.fc(size=hid_size, act='relu') # 第一层用 relu 激活 
        self.fc2 = layers.fc(size=act_dim, act='tanh') # 第二层用 tanh 激活 -1~1

    def policy(self, obs): # 输入 obs
        hid = self.fc1(obs)
        means = self.fc2(hid)
        return means # 输出一个 -1~1 的浮点数


class CriticModel(parl.Model): # 评价模型
    def __init__(self):
        hid_size = 100

        self.fc1 = layers.fc(size=hid_size, act='relu') # 第一层用 relu
        self.fc2 = layers.fc(size=1, act=None) # 第二层没有激活函数,线性,因为输出的是 Q 值

    def value(self, obs, act):
        concat = layers.concat([obs, act], axis=1) 
        # 沿着第 2 个维度进行拼接,即 行数不变,列数增加
        # 每一个 样本 包含了 obs 和 act
        hid = self.fc1(concat)
        Q = self.fc2(hid)
        Q = layers.squeeze(Q, axes=[1]) # 压缩一维数据
        return Q

4.2 Algorithm

Algorithm 定义了具体的算法来更新前向网络(Model),也就是通过定义损失函数来更新Model,和算法相关的计算都放在algorithm中。

# from parl.algorithms import DDPG # 也可以直接从parl库中快速引入DDPG算法,无需自己重新写算法

class DDPG(parl.Algorithm):
    def __init__(self,
                 model,
                 gamma=None,
                 tau=None,
                 actor_lr=None,
                 critic_lr=None):
        """  DDPG algorithm
        
        Args:
            model (parl.Model): actor and critic 的前向网络.
                                model 必须实现 get_actor_params() 方法.
            gamma (float): reward的衰减因子.
            tau (float): self.target_model 跟 self.model 同步参数 的 软更新参数
            actor_lr (float): actor 的学习率
            critic_lr (float): critic 的学习率
        """
        assert isinstance(gamma, float) # 确认参数类型
        assert isinstance(tau, float)
        assert isinstance(actor_lr, float)
        assert isinstance(critic_lr, float)
        self.gamma = gamma # 赋值
        self.tau = tau
        self.actor_lr = actor_lr
        self.critic_lr = critic_lr

        self.model = model # 传入 model
        self.target_model = deepcopy(model) # 硬拷贝 model

    def predict(self, obs):
        """ 使用 self.model 的 actor model 来预测动作
        """
        return self.model.policy(obs)

    def learn(self, obs, action, reward, next_obs, terminal):
        """ 用DDPG算法更新 actor 和 critic
        """
        actor_cost = self._actor_learn(obs)
        critic_cost = self._critic_learn(obs, action, reward, next_obs,
                                         terminal)
        return actor_cost, critic_cost

    def _actor_learn(self, obs):
        action = self.model.policy(obs) # 获得的 action 是一个 -1~1 的连续值
        Q = self.model.value(obs, action) # 状态和动作下,通过神经网络,获得对应 Q 值
        cost = layers.reduce_mean(-1.0 * Q) # 最小化 cost,就是最大化 Q 值
        optimizer = fluid.optimizer.AdamOptimizer(self.actor_lr)
        optimizer.minimize(cost, parameter_list=self.model.get_actor_params())
        return cost

    def _critic_learn(self, obs, action, reward, next_obs, terminal):
        next_action = self.target_model.policy(next_obs) # 预测下一次的动作
        next_Q = self.target_model.value(next_obs, next_action) # 获取下一步的 Q

        terminal = layers.cast(terminal, dtype='float32') # 把 bool 值转化为浮点数
        target_Q = reward + (1.0 - terminal) * self.gamma * next_Q # 求得 目标 Q
        target_Q.stop_gradient = True # 阻止更新网络参数

        Q = self.model.value(obs, action) # 状态和动作下,通过神经网络,获得对应 Q 值
        cost = layers.square_error_cost(Q, target_Q) # 最小化预测 Q 和 目标 Q 的差别
        cost = layers.reduce_mean(cost)
        optimizer = fluid.optimizer.AdamOptimizer(self.critic_lr)
        optimizer.minimize(cost)
        return cost

    def sync_target(self, decay=None, share_vars_parallel_executor=None):
        """ self.target_model从self.model复制参数过来,可设置软更新参数
        """
        if decay is None:
            decay = 1.0 - self.tau 
            # 新参数 0.1% 权重,旧参数为 99.9% 的权重
            # 使得参数更新更平滑
        self.model.sync_weights_to(
            self.target_model,
            decay=decay,
            share_vars_parallel_executor=share_vars_parallel_executor)
        # 使用 PARL 自带的函数进行参数同步

4.3 Agent

Agent负责算法与环境的交互,在交互过程中把生成的数据提供给Algorithm来更新模型(Model),数据的预处理流程也一般定义在这里。

class Agent(parl.Agent):
    def __init__(self, algorithm, obs_dim, act_dim):
        assert isinstance(obs_dim, int)
        assert isinstance(act_dim, int)
        self.obs_dim = obs_dim # 状态维度
        self.act_dim = act_dim # 动作维度(这里为 1)
        super(Agent, self).__init__(algorithm)

        # 注意:最开始先同步self.model和self.target_model的参数.
        self.alg.sync_target(decay=0)

    def build_program(self):
        self.pred_program = fluid.Program()
        self.learn_program = fluid.Program()

        with fluid.program_guard(self.pred_program): # 形成预测程序
            # 输入参数定义
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            # 输出参数定义
            self.pred_act = self.alg.predict(obs)

        with fluid.program_guard(self.learn_program): # 形成学习程序
            # 输入参数定义
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            act = layers.data(
                name='act', shape=[self.act_dim], dtype='float32')
            reward = layers.data(name='reward', shape=[], dtype='float32')
            next_obs = layers.data(
                name='next_obs', shape=[self.obs_dim], dtype='float32')
            terminal = layers.data(name='terminal', shape=[], dtype='bool')
            # 输出参数定义
            _, self.critic_cost = self.alg.learn(obs, act, reward, next_obs,
                                                 terminal)

    def predict(self, obs):
        obs = np.expand_dims(obs, axis=0) # 程序输入数据结构要求增维
        act = self.fluid_executor.run(
            self.pred_program, feed={'obs': obs},
            fetch_list=[self.pred_act])[0]
        act = np.squeeze(act)
        return act

    def learn(self, obs, act, reward, next_obs, terminal):
        # 输入的数据
        feed = {
            'obs': obs,
            'act': act,
            'reward': reward,
            'next_obs': next_obs,
            'terminal': terminal
        }
        # 运行程序,并取得输出的数据
        critic_cost = self.fluid_executor.run(
            self.learn_program, feed=feed, fetch_list=[self.critic_cost])[0]
        self.alg.sync_target()
        return critic_cost # 评价网络的 cost

五、连续控制版本的CartPole环境

# env.py
# Continuous version of Cartpole

import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np


class ContinuousCartPoleEnv(gym.Env):
    metadata = {
        'render.modes': ['human', 'rgb_array'],
        'video.frames_per_second': 50
    }

    def __init__(self):
        self.gravity = 9.8
        self.masscart = 1.0
        self.masspole = 0.1
        self.total_mass = (self.masspole + self.masscart)
        self.length = 0.5  # actually half the pole's length
        self.polemass_length = (self.masspole * self.length)
        self.force_mag = 30.0
        self.tau = 0.02  # seconds between state updates
        self.min_action = -1.0
        self.max_action = 1.0

        # Angle at which to fail the episode
        self.theta_threshold_radians = 12 * 2 * math.pi / 360
        self.x_threshold = 2.4

        # Angle limit set to 2 * theta_threshold_radians so failing observation
        # is still within bounds
        high = np.array([
            self.x_threshold * 2,
            np.finfo(np.float32).max,
            self.theta_threshold_radians * 2,
            np.finfo(np.float32).max])

        self.action_space = spaces.Box(
            low=self.min_action,
            high=self.max_action,
            shape=(1,)
        )
        self.observation_space = spaces.Box(-high, high)

        self.seed()
        self.viewer = None
        self.state = None

        self.steps_beyond_done = None

    def seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def stepPhysics(self, force):
        x, x_dot, theta, theta_dot = self.state
        costheta = math.cos(theta)
        sintheta = math.sin(theta)
        temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta) / self.total_mass
        thetaacc = (self.gravity * sintheta - costheta * temp) / \
            (self.length * (4.0/3.0 - self.masspole * costheta * costheta / self.total_mass))
        xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
        x = x + self.tau * x_dot
        x_dot = x_dot + self.tau * xacc
        theta = theta + self.tau * theta_dot
        theta_dot = theta_dot + self.tau * thetaacc
        return (x, x_dot, theta, theta_dot)

    def step(self, action):
        action = np.expand_dims(action, 0)
        assert self.action_space.contains(action), \
            "%r (%s) invalid" % (action, type(action))
        # Cast action to float to strip np trappings
        force = self.force_mag * float(action)
        self.state = self.stepPhysics(force)
        x, x_dot, theta, theta_dot = self.state
        done = x < -self.x_threshold \
            or x > self.x_threshold \
            or theta < -self.theta_threshold_radians \
            or theta > self.theta_threshold_radians
        done = bool(done)

        if not done:
            reward = 1.0
        elif self.steps_beyond_done is None:
            # Pole just fell!
            self.steps_beyond_done = 0
            reward = 1.0
        else:
            if self.steps_beyond_done == 0:
                gym.logger.warn("""
You are calling 'step()' even though this environment has already returned
done = True. You should always call 'reset()' once you receive 'done = True'
Any further steps are undefined behavior.
                """)
            self.steps_beyond_done += 1
            reward = 0.0

        return np.array(self.state), reward, done, {}

    def reset(self):
        self.state = self.np_random.uniform(low=-0.05, high=0.05, size=(4,))
        self.steps_beyond_done = None
        return np.array(self.state)

    def render(self, mode='human'):
        screen_width = 600
        screen_height = 400

        world_width = self.x_threshold * 2
        scale = screen_width /world_width
        carty = 100  # TOP OF CART
        polewidth = 10.0
        polelen = scale * 1.0
        cartwidth = 50.0
        cartheight = 30.0

        if self.viewer is None:
            from gym.envs.classic_control import rendering
            self.viewer = rendering.Viewer(screen_width, screen_height)
            l, r, t, b = -cartwidth / 2, cartwidth / 2, cartheight / 2, -cartheight / 2
            axleoffset = cartheight / 4.0
            cart = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
            self.carttrans = rendering.Transform()
            cart.add_attr(self.carttrans)
            self.viewer.add_geom(cart)
            l, r, t, b = -polewidth / 2, polewidth / 2, polelen-polewidth / 2, -polewidth / 2
            pole = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
            pole.set_color(.8, .6, .4)
            self.poletrans = rendering.Transform(translation=(0, axleoffset))
            pole.add_attr(self.poletrans)
            pole.add_attr(self.carttrans)
            self.viewer.add_geom(pole)
            self.axle = rendering.make_circle(polewidth / 2)
            self.axle.add_attr(self.poletrans)
            self.axle.add_attr(self.carttrans)
            self.axle.set_color(.5, .5, .8)
            self.viewer.add_geom(self.axle)
            self.track = rendering.Line((0, carty), (screen_width, carty))
            self.track.set_color(0, 0, 0)
            self.viewer.add_geom(self.track)

        if self.state is None:
            return None

        x = self.state
        cartx = x[0] * scale + screen_width / 2.0  # MIDDLE OF CART
        self.carttrans.set_translation(cartx, carty)
        self.poletrans.set_rotation(-x[2])

        return self.viewer.render(return_rgb_array=(mode == 'rgb_array'))

    def close(self):
        if self.viewer:
            self.viewer.close()

六、设置经验池

DQNreplay_mamory.py代码一致

# replay_memory.py
import random
import collections
import numpy as np


class ReplayMemory(object):
    def __init__(self, max_size):
        self.buffer = collections.deque(maxlen=max_size)

    def append(self, exp):
        self.buffer.append(exp)

    def sample(self, batch_size):
        mini_batch = random.sample(self.buffer, batch_size)
        obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], []

        for experience in mini_batch:
            s, a, r, s_p, done = experience
            obs_batch.append(s)
            action_batch.append(a)
            reward_batch.append(r)
            next_obs_batch.append(s_p)
            done_batch.append(done)

        return np.array(obs_batch).astype('float32'), \
            np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'),\
            np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32')

    def __len__(self):
        return len(self.buffer)

七、Training && Test(训练&&测试)

def run_episode(agent, env, rpm):
    obs = env.reset()
    total_reward = 0
    steps = 0
    while True:
        steps += 1
        batch_obs = np.expand_dims(obs, axis=0)
        action = agent.predict(batch_obs.astype('float32'))

        # 增加探索扰动, 输出限制在 [-1.0, 1.0] 范围内
        action = np.clip(np.random.normal(action, NOISE), -1.0, 1.0)
        # action 为均值(-1~1),NOISE 为方差,正态分布区值
        # np.clip 限制区间,以免区值超出范围

        next_obs, reward, done, info = env.step(action) # 交互一步

        action = [action]  # 方便存入replaymemory
        rpm.append((obs, action, REWARD_SCALE * reward, next_obs, done))

        if len(rpm) > MEMORY_WARMUP_SIZE and (steps % 5) == 0:
            (batch_obs, batch_action, batch_reward, batch_next_obs,
             batch_done) = rpm.sample(BATCH_SIZE)
            agent.learn(batch_obs, batch_action, batch_reward, batch_next_obs,
                        batch_done)

        obs = next_obs
        total_reward += reward

        if done or steps >= 200:
            break
    return total_reward


def evaluate(env, agent, render=False):
    eval_reward = []
    for i in range(5):
        obs = env.reset()
        total_reward = 0
        steps = 0
        while True:
            batch_obs = np.expand_dims(obs, axis=0)
            action = agent.predict(batch_obs.astype('float32'))
            action = np.clip(action, -1.0, 1.0)

            steps += 1
            next_obs, reward, done, info = env.step(action)

            obs = next_obs
            total_reward += reward

            if render:
                env.render()
            if done or steps >= 200:
                break
        eval_reward.append(total_reward)
    return np.mean(eval_reward)

八、创建环境和Agent,创建经验池,启动训练,保存模型

# 创建环境
env = ContinuousCartPoleEnv()

obs_dim = env.observation_space.shape[0]
act_dim = env.action_space.shape[0]

# 使用PARL框架创建agent
model = Model(act_dim)
# model实例化
algorithm = DDPG(
    model, gamma=GAMMA, tau=TAU, actor_lr=ACTOR_LR, critic_lr=CRITIC_LR)
# algorithm 实例化,传入 model
agent = Agent(algorithm, obs_dim, act_dim)
# agent 实例化,传入 algorithm

# 创建经验池
rpm = ReplayMemory(MEMORY_SIZE)
# 往经验池中预存数据
while len(rpm) < MEMORY_WARMUP_SIZE:
    run_episode(agent, env, rpm)

episode = 0
while episode < TRAIN_EPISODE:
    for i in range(50):
        total_reward = run_episode(agent, env, rpm)
        episode += 1

    eval_reward = evaluate(env, agent, render=False)
    logger.info('episode:{}    test_reward:{}'.format(
        episode, eval_reward))

你可能感兴趣的:(强化学习,机器学习,人工智能,强化学习,算法,百度)