Java 语言在设计之初就引入了线程的概念,以充分利用现代处理器的计算能力,这既带来了强大、灵活的多线程机制,也带来了线程安全等令人混淆的问题,而 Java 内存模型(Java Memory Model,JMM)为我们提供了一个在纷乱之中达成一致的指导准则。
今天我要问你的问题是,Java 内存模型中的 happen-before 是什么?
Happen-before 关系,是 Java 内存模型中保证多线程操作可见性的机制,也是对早期语言规范中含糊的可见性概念的一个精确定义。
它的具体表现形式,包括但远不止是我们直觉中的 synchronized、volatile、lock 操作顺序等方面,例如:
这些 happen-before 关系是存在着传递性的,如果满足 a happen-before b 和 b happen-before c,那么 a happen-before c 也成立。
前面我一直用 happen-before,而不是简单说前后,是因为它不仅仅是对执行时间的保证,也包括对内存读、写操作顺序的保证。仅仅是时钟顺序上的先后,并不能保证线程交互的可见性。
今天的问题是一个常见的考察 Java 内存模型基本概念的问题,我前面给出的回答尽量选择了和日常开发相关的规则。
JMM 是面试的热点,可以看作是深入理解 Java 并发编程、编译器和 JVM 内部机制的必要条件,但这同时也是个容易让初学者无所适从的主题。对于学习 JMM,我有一些个人建议:
在这一讲中,兼顾面试和编程实践,我会结合例子梳理下面两点:
注意,专栏中 Java 内存模型就是特指 JSR-133 中重新定义的 JMM 规范。在特定的上下文里,也许会与 JVM(Java)内存结构等混淆,并不存在绝对的对错,但一定要清楚面试官的本意,有的面试官也会特意考察是否清楚这两种概念的区别。
Java 是最早尝试提供内存模型的语言,这是简化多线程编程、保证程序可移植性的一个飞跃。早期类似 C、C++ 等语言,并不存在内存模型的概念(C++ 11 中也引入了标准内存模型),其行为依赖于处理器本身的内存一致性模型,但不同的处理器可能差异很大,所以一段 C++ 程序在处理器 A 上运行正常,并不能保证其在处理器 B 上也是一致的。
即使如此,最初的 Java 语言规范仍然是存在着缺陷的,当时的目标是,希望 Java 程序可以充分利用现代硬件的计算能力,同时保持“书写一次,到处执行”的能力。
但是,显然问题的复杂度被低估了,随着 Java 被运行在越来越多的平台上,人们发现,过于泛泛的内存模型定义,存在很多模棱两可之处,对 synchronized 或 volatile 等,类似指令重排序时的行为,并没有提供清晰规范。这里说的指令重排序,既可以是编译器优化行为,也可能是源自于现代处理器的乱序执行等。
换句话说:
所以,Java 迫切需要一个完善的 JMM,能够让普通 Java 开发者和编译器、JVM 工程师,能够清晰地达成共识。换句话说,可以相对简单并准确地判断出,多线程程序什么样的执行序列是符合规范的。
所以:
我画了一个简单的角色层次图,不同工程师分工合作,其实所处的层面是有区别的。JMM为 Java 工程师隔离了不同处理器内存排序的区别,这也是为什么我通常不建议过早深入处理器体系结构,某种意义上来说,这样本就违背了 JMM 的初衷。
在这里,我有必要简要介绍一下典型的问题场景。
我在第 25 讲里介绍了 JVM 内部的运行时数据区,但是真正程序执行,实际是要跑在具体的处理器内核上。你可以简单理解为,把本地变量等数据从内存加载到缓存、寄存器,然后运算结束写回主内存。你可以从下面示意图,看这两种模型的对应。
看上去很美好,但是当多线程共享变量时,情况就复杂了。试想,如果处理器对某个共享变量进行了修改,可能只是体现在该内核的缓存里,这是个本地状态,而运行在其他内核上的线程,可能还是加载的旧状态,这很可能导致一致性的问题。从理论上来说,多线程共享引
入了复杂的数据依赖性,不管编译器、处理器怎么做重排序,都必须尊重数据依赖性的要求,否则就打破了正确性!这就是 JMM 所要解决的问题。
JMM 内部的实现通常是依赖于所谓的内存屏障,通过禁止某些重排序的方式,提供内存可见性保证,也就是实现了各种 happen-before 规则。与此同时,更多复杂度在于,需要尽量确保各种编译器、各种体系结构的处理器,都能够提供一致的行为。
我以 volatile 为例,看看如何利用内存屏障实现 JMM 定义的可见性?
对于一个 volatile 变量:
内存屏障能够在类似变量读、写操作之后,保证其他线程对 volatile 变量的修改对当前线程可见,或者本地修改对其他线程提供可见性。换句话说,线程写入,写屏障会通过类似强迫刷出处理器缓存的方式,让其他线程能够拿到最新数值。
如果你对更多内存屏障的细节感兴趣,或者想了解不同体系结构的处理器模型,建议参考 JSR-133相关文档,我个人认为这些都是和特定硬件相关的,内存屏障之类只是实现 JMM 规范的技术手段,并不是规范的要求。
从应用开发者的角度,JMM 提供的可见性,体现在类似 volatile 上,具体行为是什么样呢?
我这里循序渐进的举两个例子。
首先,前几天有同学问我一个问题,请看下面的代码片段,希望达到的效果是,当 condition 被赋值为 false 时,线程 A 能够从循环中退出。
// Thread A
while (condition) {
}
// Thread B
condition = false;
这里就需要 condition 被定义为 volatile 变量,不然其数值变化,往往并不能被线程 A 感知,进而无法退出。当然,也可以在 while 中,添加能够直接或间接起到类似效果的代码。
第二,我想举 Brian Goetz 提供的一个经典用例,使用 volatile 作为守卫对象,实现某种程度上轻量级的同步,请看代码片段:
Map configOptions;
char[] configText;
volatile boolean initialized = false;
// Thread A
configOptions = new HashMap();
configText = readConfigFile(fileName);
processConfigOptions(configText, configOptions);
initialized = true;
// Thread B
while (!initialized)
sleep();
// use configOptions
JSR-133 重新定义的 JMM 模型,能够保证线程 B 获取的 configOptions 是更新后的数值。
也就是说 volatile 变量的可见性发生了增强,能够起到守护其上下文的作用。线程 A 对 volatile 变量的赋值,会强制将该变量自己和当时其他变量的状态都刷出缓存,为线程 B 提供可见性。当然,这也是以一定的性能开销作为代价的,但毕竟带来了更加简单的多线程行为。
我们经常会说 volatile 比 synchronized 之类更加轻量,但轻量也仅仅是相对的,volatile 的读、写仍然要比普通的读写要开销更大,所以如果你是在性能高度敏感的场景,除非你确定需要它的语义,不然慎用。
今天,我从 happen-before 关系开始,帮你理解了什么是 Java 内存模型。为了更方便理解,我作了简化,从不同工程师的角色划分等角度,阐述了问题的由来,以及 JMM 是如何通过类似内存屏障等技术实现的。最后,我以 volatile 为例,分析了可见性在多线程场景中的典型用例。