R语言参数自抽样法Bootstrap:估计MSE、经验功效、杰克刀Jackknife、非参数自抽样法可视化

全文链接:http://tecdat.cn/?p=27695 

参数引导:估计 MSE

统计学问题:级别(k\)修剪后的平均值的MSE是多少?

我们如何回答它:估计从标准柯西分布(t 分布 w/df = 1)生成的大小为 20 的随机样本的水平 \(k\) 修剪均值的 MSE。目标参数 \(\theta\) 是中心或中位数。柯西分布不存在均值。在表中总结 MSE 的估计值 \(k = 1, 2, ... 9\)。

result=rep(0,9)

for(j in 1:9){

  n<-20



  for(i in 1:m){

    x<-sort(rcauchy(n))

R语言参数自抽样法Bootstrap:估计MSE、经验功效、杰克刀Jackknife、非参数自抽样法可视化_第1张图片

参数自抽样法:经验功效计算

统计问题:随着零假设与现实之间的差异发生变化,功效如何变化?

我们如何回答:绘制 t 检验的经验功效曲线。

t 检验的原假设是 (\mu = 500)。另一种选择是(\mu \ne 500)

您将从具有(\sigma = 100) 的正态分布总体中抽取大小为 20 的样本。您将使用 0.05 的显着性水平。

显示当总体的实际平均值从 350 变为 650(增量为 10)时,功效如何变化。

y 轴是经验功效(通过 bootstrap 估计),x 轴是 \(\mu\) 的不同值(350、360、370 … 650)。



    x <- rnorm(n, mean = muA, sd = sigma) #抽取平均值=450的样本

    ts <- t.test(x, mu = mu0) #对无效的mu=500进行t检验

    ts$p.value

 R语言参数自抽样法Bootstrap:估计MSE、经验功效、杰克刀Jackknife、非参数自抽样法可视化_第2张图片

参数自抽样法:经验功效计算

统计问题:样本量如何影响功效?

我们如何回答:创建更多的功效曲线,因为实际均值在 350 到 650 之间变化,但使用大小为 n = 10、n = 20、n = 30、n = 40 和 n = 50 的样本生成它们。同一图上的所有 5 条功效曲线。

pvals <- replicate(m, pvalue())

power <- mean(pvals <= 0.05)





points(sequence,final2\[2,\],col="red",pch=1)



points(sequence,final2\[3,\],col="blue",pch=2)

 R语言参数自抽样法Bootstrap:估计MSE、经验功效、杰克刀Jackknife、非参数自抽样法可视化_第3张图片

参数自抽样法:经验置信水平

统计问题:在制作 95% CI 时,如果我们的样本很小并且不是来自正态分布,我们是否仍有 95% 的置信度?

我们如何回答它:根据样本为总体的平均值创建一堆置信区间 (95%)。

您的样本大小应为 16,取自具有 2 个自由度的卡方分布。

找出未能捕捉总体真实均值的置信区间的比例。(提醒:自由度为 \(k\) 的卡方分布的平均值为 \(k\)。)

for(i in 1:m){

  samp=rchisq(n,df=2)

  mean=mean(samp)

  sd=sd(samp)

  upper=mean+qt(0.975,df=15)*sd/4

 

非参数自抽样法置信区间

统计问题:基于一个样本,我们可以为总体相关性创建一个置信区间吗?

我们如何回答:为相关统计量创建一个 bootstrap t 置信区间估计。

boot.ti <-

  function(x, B = 500, R = 100, level = .95, stattic){

    

    x <- as.matrix(x)

 

library(boot)       #for boot and boot.ci



data(law, package = "bootstrap")



dat <- law



ci <- boot.t.ci(dat, statistic = stat, B=2000, R=200)

ci

 

自抽样法后的Jackknife

统计问题:R 的标准误差的 bootstrap 估计的标准误差是多少?

我们如何回答它: data(law) 像上一个问题一样使用。在 bootstrap 后执行 Jackknife 以获得标准误差估计的标准误差估计。(bootstrap 用于获得总体中 R 的 SE 的估计值。然后使用折刀法获得该 SE 估计值的 SE。)

indices <- matrix(0, nrow = B, ncol = n)



# 进行自举

for(b in 1:B){

    i <- sample(1:n, size = n, replace = TRUE)

    LSAT <- law$LSAT\[i\]

 

#  jackknife



for(i in 1:n){

    keepers <- function(k){

         !any(k == i)   

    }

 

自测题

Submit the rendered HTML file. Make sure all requested output (tables, graphs, etc.) appear in your document when you submit.

Parametric Bootstrap: Estimate MSE

Statistical question: What is the MSE of a level \(k\) trimmed mean?

How we can answer it: Estimate the MSE of the level \(k\) trimmed mean for random samples of size 20 generated from a standard Cauchy distribution (t-distribution w/df = 1). The target parameter \(\theta\) is the center or median. The mean does not exist for a Cauchy distribution. Summarize the estimates of MSE in a table for \(k = 1, 2, ... 9\).

Parametric Bootstrap: Empirical Power Calculations

Statistical question: How does power change as the difference between the null hypothes and the reality changes?

How we can answer it: Plot an empirical power curve for a t-test.

The null hypothesis of the t-test is \(\mu = 500\). The alternative is \(\mu \ne 500\).

You will draw samples of size 20, from a normally distributed population with \(\sigma = 100\). You will use a significance level of 0.05.

Show how the power changes as the actual mean of the population changes from 350 to 650 (increments of 10).

On the y-axis will be the empirical power (estimated via bootstrap) and the x-axis will be the different values of \(\mu\) (350, 360, 370 … 650).

Parametric Bootstrap: Empirical Power Calculations

Statistical question: How does sample size affect power?

How we can answer it: Create more power curves as the actual mean varies from 350 to 650, but produce them for using samples of size n = 10, n = 20, n = 30, n = 40, and n = 50. Put all 5 power curves on the same plot.

Parametric Bootstrap: Empirical Confidence Level

Statistical question: When making a 95% CI, are we still 95% confident if our samples are small and do not come from a normal distribution?

How we can answer it: Create a bunch of Confidence Intervals (95%) for the mean of a population based on a sample.

\[\bar{x} \pm t^{*} \times \frac{s}{\sqrt{n}}\]

Your samples should be of size 16, drawn from a chi-squared distribution with 2 degrees of freedom.

Find the proportion of Confidence Intervals that fail to capture the true mean of the population. (Reminder: a chi-squared distribution with \(k\) degrees of freedom has a mean of \(k\).)

Non Parametric Bootstrap Confidence Interval

Statistical question: Based on one sample, can we create a confidence interval for the correlation of the population?

How we can answer it: Create a bootstrap t confidence interval estimate for the correlation statistic.

Jackknife after bootstrap

Statistical question: What is the standard error of the bootstrap estimate of the standard error of R?

How we can answer it: Use data(law) like the previous problem. Perform Jackknife after bootstrap to get a standard error estimate of the standard error estimate. (The bootstrap is used to get an estimate of the SE of R in the population. The jackknife is then used to get an SE of that SE estimate.)


R语言参数自抽样法Bootstrap:估计MSE、经验功效、杰克刀Jackknife、非参数自抽样法可视化_第4张图片 

最受欢迎的见解

1.使用R语言进行METROPLIS-IN-GIBBS采样和MCMC运行

2.R语言中的Stan概率编程MCMC采样的贝叶斯模型

3.R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样

4.R语言BUGS JAGS贝叶斯分析 马尔科夫链蒙特卡洛方法(MCMC)采样

5.R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归

6.R语言Gibbs抽样的贝叶斯简单线性回归仿真分析

7.R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数

8.R语言使用Metropolis- Hasting抽样算法进行逻辑回归

9.R语言中基于混合数据抽样(MIDAS)回归的HAR-RV模型预测GDP增长回归的HAR-RV模型预测GDP增长")

你可能感兴趣的:(数据挖掘深度学习人工智能算法)