- 大数据和人工智能概念全面解析
就犯得上方法
一、大数据和人工智能大数据是伴随着信息数据爆炸式增长和网络计算技术迅速发展而兴起的一个新型概念。根据麦肯锡全球研究所的定义,大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据能够帮助各行各业的企业从原本毫无价值的海量数据中挖掘出用户的需求,使数据能够从量变到质变,真正产生价值
- 一文搞懂大数据神器Spark,真的太牛了!
qq_23519469
大数据spark分布式
Spark是什么在如今这个大数据时代,数据量呈爆炸式增长,传统的数据处理方式已经难以满足需求。就拿电商平台来说,每天产生的交易数据、用户浏览数据、评论数据等,数量巨大且种类繁多。假如要对这些数据进行分析,比如分析用户的购买行为,找出最受欢迎的商品,预测未来的销售趋势等,用普通的单机处理方式,可能需要花费很长时间,甚至根本无法完成。这时,Spark就应运而生了。Spark是一个开源的、基于内存计算的
- 数据湖:Apache Iceberg在腾讯的探索和实践
学而知之@
数据库腾讯大数据java编程语言
摘要:今天分享的是ApacheIceberg在腾讯内部的探索和实践。本文结合腾讯大数据技术分享内容和2020全球软件开发大会分享内容进行整理,主要内容包括:1、数据湖技术概述2、ApacheIceberg的简介3、腾讯为什么选择ApacheIceberg4、腾讯看点万亿数据下的业务痛点5、ApacheIceberg在看点实践6、ApacheIceberg读写和删除ApacheIceberg新一代数
- AI 时代,学习 Java 应如何入手?
琢磨先生David
人工智能java
一、Java的现状:生态繁荣与AI融合的双重机遇在2025年的技术版图中,Java依然稳坐企业级开发的“头把交椅”。根据行业统计,Java在全球企业级应用中的市场份额仍超过65%,尤其在微服务架构、大数据平台和物联网(IoT)领域占据核心地位。随着云原生技术的普及,Java生态正经历新一轮进化:轻量化框架通过无服务器架构优化,启动速度提升300%,内存占用降低50%,使得Java在容器化部署中更具
- Apache Doris整合Iceberg + Flink CDC构建实时湖仓体的联邦查询分析架构
MfvShell
apacheflink架构Flink
随着大数据技术的迅猛发展,构建实时湖仓体并进行联邦查询分析成为了许多企业的迫切需求。在这篇文章中,我们将探讨如何利用ApacheDoris整合Iceberg和FlinkCDC来构建这样一个架构,并提供相应的源代码示例。简介实时湖仓体是一种灵活、可扩展的数据架构,结合了数据湖和数据仓库的优势。ApacheDoris是一款开源的分布式SQL引擎,专注于实时分析和查询。Iceberg是一种开放式表格格式
- Flink读取kafka数据并写入HDFS
王知无(import_bigdata)
Flink系统性学习专栏hdfskafkaflink
硬刚大数据系列文章链接:2021年从零到大数据专家的学习指南(全面升级版)2021年从零到大数据专家面试篇之Hadoop/HDFS/Yarn篇2021年从零到大数据专家面试篇之SparkSQL篇2021年从零到大数据专家面试篇之消息队列篇2021年从零到大数据专家面试篇之Spark篇2021年从零到大数据专家面试篇之Hbase篇
- Java 大视界 -- Java 大数据在智能体育赛事直播数据分析与观众互动优化中的应用(142)
青云交
大数据新视界Java大视界java大数据体育赛事直播数据分析观众互动数据采集个性化推荐
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Apache storm
赵世炎
stormhadoop
Apachestorm是一个分布式的实时大数据处理系统。用于在容错和水平可拓展方法中处理大量数据。它是一个流数据框架,具有很高的摄取率,无状态。通过zk管理分布式环境和集群状态,并行地对实时数据执行各种操作。storm易于设置和操作,并且它保证每个消息将通过拓扑至少处理一次。基本上Hadoop和Storm框架用于分析大数据。两者互补,在某些方面有所不同。ApacheStorm执行除持久性之外的所有
- 探索电商大数据的艺术:TBBKAnalysis深度解读与应用推荐
洪显彦Lawyer
探索电商大数据的艺术:TBBKAnalysis深度解读与应用推荐TBBKAnalysis关于淘宝“爆款”数据爬取与分析。具体分析见—项目地址:https://gitcode.com/gh_mirrors/tb/TBBKAnalysis在数字化时代的数据洪流中,每一个细微的数据点都蕴含着洞察未来的机遇。今天,我们要探讨的是一个独特且极具启发性的开源项目——TBBKAnalysis。该项目源自知乎上一
- 什么是Apache Avro?
maozexijr
apache
什么是ApacheAvro?ApacheAvro是一个开源的数据序列化框架,主要用于高效的数据交换和存储。它由ApacheHadoop项目开发,广泛应用于大数据生态系统中(如Hadoop、Kafka等)。Avro提供了一种紧凑、快速的二进制数据格式,同时支持丰富的数据结构和模式演化。核心特性跨语言支持Avro支持多种编程语言(如Java、Python、C++、Go等),使得不同语言之间的数据交换变
- 计算机毕业设计之基于Hadoop的热点新闻分析系统的设计与实现
微信bishe69
课程设计pythondjangomysql
近些年来,随着科技的飞速发展,互联网的普及逐渐延伸到各行各业中,给人们生活带来了十分的便利,热点新闻分析系统利用计算机网络实现信息化管理,使整个热点新闻分析的发展和服务水平有显著提升。本文拟采用PyCharm开发工具,django框架、Python语言、Hadoop大数据处理技术进行开发,后台使用MySQL数据库进行信息管理,设计开发的热点新闻分析系统。通过调研和分析,系统拥有管理员和用户两个模块
- python爬虫项目
范哥来了
python爬虫开发语言
项目名称:国家自然科学基金大数据知识管理服务门户爬取项目爬取内容:爬取内容:资助项目爬取链接:HTTP://KD.NSFC.GOV.CN/BASEQUERY/SUPPORTQUERY为了完成“国家自然科学基金大数据知识管理服务门户”的资助项目信息爬取任务,我们需要设计一个网络爬虫。考虑到目标网站的具体情况,我们将采用Python语言结合requests库来处理HTTP请求,以及使用Beautifu
- Java 大视界 -- 基于 Java 的大数据实时流处理中的窗口操作与时间语义详解(135)
青云交
大数据新视界Java大视界java大数据大数据实时流处理窗口操作时间语义滚动窗口滑动窗口
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Lisp语言的云存储
俞嫦曦
包罗万象golang开发语言后端
Lisp语言的云存储:构建智能化数据管理新时代引言随着信息技术的飞速发展,数据的生产和存储呈现出爆炸式增长。云存储作为一种新兴的数据管理方式,逐渐成为各行业必不可少的基础设施。尤其是在大数据、人工智能等领域,对数据的快速访问和高效存储要求尤为迫切。与此同时,Lisp语言作为一种历史悠久且具有强大表达能力的编程语言,通过其特有的特性,可以在云存储的架构设计与实现方面发挥独特的优势。本文将深入探讨Li
- 中电金信25/3/18面前笔试(需求分析岗+数据开发岗)
苍曦
需求分析前端javascript
部分相同题目在第二次数据开发岗中不做解析,本次解析来源于豆包AI,正确与否有待商榷,本文只提供一个速查与知识点的补充。一、需求分析第1题,单选题,Hadoop的核心组件包括HDFS和以下哪个?MapReduceSparkStormFlink解析:Hadoop的核心组件是HDFS(分布式文件系统)和MapReduce(分布式计算框架)。Spark、Storm、Flink虽然也是大数据处理相关技术,但
- Flink实践:通过Flink SQL进行SFTP文件的读写操作
kkk1622245
flinksql大数据
在大数据处理领域,ApacheFlink出类拔萃,它是一个高性能、易扩展、用于处理有界和无界数据流的分布式处理引擎。FlinkSQL是ApacheFlink提供的一种声明式API,允许开发者以SQL的形式,轻松实现复杂的数据流和批处理分析。本文将重点探讨如何通过FlinkSQL来实现对SFTP文件的读写操作,这是在实际应用中经常遇到的一种场景。Flink与SFTP文件的读写在很多实际应用场景中,数
- 题解 | 牛客周赛 Round 49 DEF Java题解
han_xue_feng
java
面试又黄了反正不是什么喜欢的工作[牛泪]面试又黄了反正不是什么喜欢的工作2024秋招数据开发第一波面试题露出#字节##滴滴##大数据##面经##秋招#引流字节阿里巴巴腾讯百度美团美团后端暑期实习体验——实习的一天早上:8点半出门坐地铁,9点下地铁到惠新西街南口地铁站,出地铁站坐班车(这一点还是不错的),9点30深圳阿里实习day1领工牌mac,认工位mentor,配环境看文档,七点就润了。看各个文
- Search after解决ES深度分页问题
Elastic开源社区
elasticsearch大数据searchafter深度分页ES
文章目录1、search_after的作用和意义2、search_after的工作原理3、search_after的使用方法4、注意事项5、与传统分页的对比6、总结search_after是Elasticsearch中用于实现深度分页的一种机制。相比于传统的from和size分页方式,search_after更适合处理大数据集的分页查询,因为它避免了深度分页带来的性能问题。1、search_aft
- 第七章Solr:企业级搜索应用
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
第七章Solr:企业级搜索应用1.背景介绍1.1搜索引擎的重要性在当今信息时代,数据量呈指数级增长,海量数据中蕴含着极其宝贵的信息和知识。然而,如何快速、准确地从大数据中检索出所需的信息,一直是企业和组织面临的巨大挑战。传统的数据库查询方式已经无法满足现代搜索需求,因此高效的搜索引擎应运而生。1.2什么是SolrApacheSolr是一个高性能、可扩展、云就绪的企业级搜索平台,由Apache软件基
- 金融租赁系统的创新发展与市场竞争力提升探讨
红点租赁系统开发
其他
内容概要随着经济的快速发展,金融租赁系统逐渐成为金融市场中不可或缺的一环。它不仅提供了灵活的资金解决方案,还促进了企业的资本结构优化与资源配置效率。因此,了解该系统的市场背景与发展现状至关重要。在现今环境下,新兴技术如人工智能、大数据和区块链等正加速推动金融租赁的创新。通过这些技术,不仅可以优化业务流程,提升运营效率,还可以增强风险管理能力。例如,利用数据分析可以实时监测租赁资产的风险,从而采取相
- 分块查找算法
1haooo
算法java算法开发语言数据结构
分块的原则前一块的最大数据,小于后一窥啊中所有的数据(块内无序,块间有序)块数数量一般等于数字的个数开根号。比如:16个数字一般分为4块左右。publicclassblockSearch{publicstaticvoidmain(String[]args){int[]arr={16,5,9,12,21,18,32,23,37,26,45,34,50,48,61,52,73,66};//共18个元素
- MongoDB数据库使用及常见问题
微笑的曙光(StevenLi)
数据库数据库mongodb
MongoDB数据库之所以备受青睐,关键在于其独特的优势满足了现代应用的需求。它采用文档型存储,数据结构灵活,无需事先定义表结构,非常适合处理复杂且多变的数据。MongoDB具备高性能和可扩展性,能够轻松应对大数据量和高并发的访问,通过分片技术实现水平扩展,确保系统稳定运行。同时,它提供了强大的数据一致性和可靠性保障,支持多种复制和故障转移机制,确保数据的高可用性和持久性。此外,MongoDB拥有
- 智慧社区2.0
陈陈爱java
java
项目亮点1.技术架构层面✅多数据源整合(MySQL+Redis+HDFS+OSS)核心亮点:不仅仅是单一数据库,而是根据数据特性使用MySQL(结构化数据)+Redis(缓存)+HDFS(大数据存储)+OSS(对象存储),提高了系统的数据存储效率和查询速度。面试时可以强调:Redis作为缓存,加速社区热点数据访问,减少MySQL压力。HDFS存储海量日志和AI任务数据,支持后续分析。OSS解决图片
- Pandas与PySpark混合计算实战:突破单机极限的智能数据处理方案
Eqwaak00
Pandaspandas学习python科技开发语言
引言:大数据时代的混合计算革命当数据规模突破十亿级时,传统单机Pandas面临内存溢出、计算缓慢等瓶颈。PySpark虽能处理PB级数据,但在开发效率和局部计算灵活性上存在不足。本文将揭示如何构建Pandas+PySpark混合计算管道,在保留Pandas便捷性的同时,借助Spark分布式引擎实现百倍性能提升,并通过真实电商用户画像案例演示全流程实现。一、混合架构设计原理1.1技术栈优势分析维度P
- 智能汽车:驶向未来的革命
智能设备
一、引言汽车,作为现代文明的标志,正经历着一场前所未有的变革。人工智能、大数据、云计算等技术的飞速发展,正推动着汽车从单纯的交通工具向智能移动空间转变。智能汽车,作为这场变革的主角,正悄然改变着我们的出行方式和生活方式。二、智能汽车的定义与发展现状智能汽车,是指搭载先进传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与X(人、车、路、云端等)智能信息交换、共享,具备复杂环境感知、智能
- 介绍 Apache Spark 的基本概念和在大数据分析中的应用
佛渡红尘
apache
ApacheSpark是一个开源的集群计算框架,最初由加州大学伯克利分校的AMPLab开发,用于大规模数据处理和分析。相比于传统的MapReduce框架,Spark具有更快的数据处理速度和更强大的计算能力。ApacheSpark的基本概念包括:弹性分布式数据集(RDD):是Spark中基本的数据抽象,是一个可并行操作的分区记录集合。RDD可以在集群中的节点间进行分布式计算。转换(Transform
- 从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
Echo_Wish
大数据大数据hadoopspark
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路说起大数据技术,Hadoop和Spark可以说是这个领域的两座里程碑。Hadoop曾是大数据的开山之作,而Spark则带领我们迈入了一个高效、灵活的大数据处理新时代。那么,它们的演变过程到底有何深意?背后技术上的取舍和选择,又意味着什么?一、Hadoop:分布式存储与计算的奠基者Hadoop诞生于互联网流量爆发式增长的时代,
- 最新计算机专业毕设论文选题大全基于BeautifulSoup的毕业设计详细题目100套优质毕设项目分享(源码+论文)✅
会写代码的羊
毕设选题课程设计beautifulsoup毕业设计毕业设计题目毕设题目python网络爬虫
文章目录前言最新毕设选题(建议收藏起来)基于BeautifulSoup的毕业设计选题毕设作品推荐前言2025全新毕业设计项目博主介绍:✌全网粉丝10W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者。技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、大数据、机器学习等设计与开发。主要内容:免费
- Flume详解——介绍、部署与使用
克里斯蒂亚诺罗纳尔多阿维罗
flume大数据分布式
1.Flume简介ApacheFlume是一个专门用于高效地收集、聚合、传输大量日志数据的分布式、可靠的系统。它特别擅长将数据从各种数据源(如日志文件、消息队列等)传输到HDFS、HBase、Kafka等大数据存储系统。特点:可扩展:支持大规模数据传输,灵活扩展容错性:支持数据恢复和失败重试,确保数据不丢失多种数据源:支持日志文件、网络数据、HTTP请求、消息队列等多种来源流式处理:数据边收集边传
- 智能租赁系统助力数字化转型提升管理效率与服务质量
红点租赁系统开发
其他
内容概要在当今快速发展的商业环境中,智能租赁系统正如一位得力助手,帮助企业以数字化的方式提升管理效率与服务质量。想象一下,传统的租赁管理就像是一场需要精确时间安排的舞蹈,而智能租赁系统则提供了高科技的音响设备,让整个表演流畅无比。通过先进的数字技术,比如云计算和大数据分析,这些系统能够优化资源配置,让企业的每一分钱都花得物有所值。更妙的是,智能租赁系统不仅高效处理日常事务,还能提供精确的数据分析,
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓