Python seaborn barplot画图案例

默认barplot

import seaborn as sns
import matplotlib.pyplot as plt 
import numpy as np 

sns.set_theme(style="whitegrid")
df = sns.load_dataset("tips")
#默认画条形图
sns.barplot(x="day",y="total_bill",data=df)
plt.show()

#计算平均值看是否和条形图的高度一致
print(df.groupby("day").agg({"total_bill":[np.mean]}))
print(df.groupby("day").agg({"total_bill":[np.std]}))
# 注意这个地方error bar显示并不是标准差

Python seaborn barplot画图案例_第1张图片

     total_bill
           mean
day
Thur  17.682742
Fri   17.151579
Sat   20.441379
Sun   21.410000
     total_bill
            std
day
Thur   7.886170
Fri    8.302660
Sat    9.480419
Sun    8.832122

使用案例

# import libraries
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
# load dataset
tips = sns.load_dataset("tips")
# Set the figure size
plt.figure(figsize=(14, 8))
# plot a bar chart
ax = sns.barplot(x="day", y="total_bill", data=tips, estimator=np.mean, ci=85, capsize=.2, color='lightblue')

Python seaborn barplot画图案例_第2张图片

修改capsize

ax=sns.barplot(x="day",y="total_bill",data=df,capsize=1.0)
plt.show()

Python seaborn barplot画图案例_第3张图片

显示error bar的值

import seaborn as sns
import matplotlib.pyplot as plt 
sns.set_theme(style="whitegrid")
df = sns.load_dataset("tips")
#默认画条形图
ax=sns.barplot(x="day",y="total_bill",data=df)
plt.show()
for p in ax.lines:
    width = p.get_linewidth()
    xy = p.get_xydata() # 显示error bar的值
    print(xy)
    print(width)
    print(p)

Python seaborn barplot画图案例_第4张图片

[[ 0.         15.85041935]
 [ 0.         19.64465726]]
2.7
Line2D(_line0)
[[ 1.         13.93096053]
 [ 1.         21.38463158]]
2.7
Line2D(_line1)
[[ 2.         18.57236207]
 [ 2.         22.40351437]]
2.7
Line2D(_line2)
[[ 3.         19.66244737]
 [ 3.         23.50109868]]
2.7
Line2D(_line3)

annotata error bar

fig, ax = plt.subplots(figsize=(8, 6))
sns.barplot(x='day', y='total_bill', data=df, capsize=0.2, ax=ax)

# show the mean
for p in ax.patches:
    h, w, x = p.get_height(), p.get_width(), p.get_x()
    xy = (x + w / 2., h / 2)
    text = f'Mean:\n{h:0.2f}'
    ax.annotate(text=text, xy=xy, ha='center', va='center')

ax.set(xlabel='day', ylabel='total_bill')
plt.show()

Python seaborn barplot画图案例_第5张图片

error bar选取sd

import seaborn as sns
import matplotlib.pyplot as plt 
sns.set_theme(style="whitegrid")
df = sns.load_dataset("tips")
#默认画条形图
sns.barplot(x="day",y="total_bill",data=df,ci="sd",capsize=1.0)## 注意这个ci参数
plt.show()

print(df.groupby("day").agg({"total_bill":[np.mean]}))
print(df.groupby("day").agg({"total_bill":[np.std]}))

Python seaborn barplot画图案例_第6张图片

     total_bill
           mean
day
Thur  17.682742
Fri   17.151579
Sat   20.441379
Sun   21.410000
     total_bill
            std
day
Thur   7.886170
Fri    8.302660
Sat    9.480419
Sun    8.832122

设置置信区间(68)

import seaborn as sns
import matplotlib.pyplot as plt 
sns.set_theme(style="whitegrid")
df = sns.load_dataset("tips")
#默认画条形图
sns.barplot(x="day",y="total_bill",data=df,ci=68,capsize=1.0)## 注意这个ci参数
plt.show()

Python seaborn barplot画图案例_第7张图片

设置置信区间(95)

import seaborn as sns
import matplotlib.pyplot as plt 
sns.set_theme(style="whitegrid")
df = sns.load_dataset("tips")
#默认画条形图
sns.barplot(x="day",y="total_bill",data=df,ci=95)
plt.show()

#计算平均值看是否和条形图的高度一致
print(df.groupby("day").agg({"total_bill":[np.mean]}))

Python seaborn barplot画图案例_第8张图片

     total_bill
           mean
day
Thur  17.682742
Fri   17.151579
Sat   20.441379
Sun   21.410000

dataframe aggregate函数使用

#计算平均值看是否和条形图的高度一致
df = sns.load_dataset("tips")
print("="*20)
print(df.groupby("day").agg({"total_bill":[np.mean]})) # 分组求均值
print("="*20)
print(df.groupby("day").agg({"total_bill":[np.std]})) # 分组求标准差
print("="*20)
print(df.groupby("day").agg({"total_bill":"nunique"})) # 这里统计的是不同的数目
print("="*20)
print(df.groupby("day").agg({"total_bill":"count"})) # 这里统计的是每个分组样本的数量
print("="*20)
print(df["day"].value_counts())
print("="*20)
====================
     total_bill
           mean
day
Thur  17.682742
Fri   17.151579
Sat   20.441379
Sun   21.410000
====================
     total_bill
            std
day
Thur   7.886170
Fri    8.302660
Sat    9.480419
Sun    8.832122
====================
      total_bill
day
Thur          61
Fri           18
Sat           85
Sun           76
====================
      total_bill
day
Thur          62
Fri           19
Sat           87
Sun           76
====================
Sat     87
Sun     76
Thur    62
Fri     19
Name: day, dtype: int64
====================

dataframe aggregate 自定义函数

import numpy as np
import pandas as pd

df = pd.DataFrame({'Buy/Sell': [1, 0, 1, 1, 0, 1, 0, 0],
                   'Trader': ['A', 'A', 'B', 'B', 'B', 'C', 'C', 'C']})
print(df)
def categorize(x):
    m = x.mean()
    return 1 if m > 0.5 else 0 if m < 0.5 else np.nan
result = df.groupby(['Trader'])['Buy/Sell'].agg([categorize, 'sum', 'count'])
result = result.rename(columns={'categorize' : 'Buy/Sell'})
result
   Buy/Sell Trader
0         1      A
1         0      A
2         1      B
3         1      B
4         0      B
5         1      C
6         0      C
7         0      C

Python seaborn barplot画图案例_第9张图片

dataframe aggregate 自定义函数2

df = sns.load_dataset("tips")
#默认画条形图

def custom1(x):
    m = x.mean()
    s = x.std()
    n = x.count()# 统计个数
    #print(n)
    return m+1.96*s/np.sqrt(n)
def custom2(x):
    m = x.mean()
    s = x.std()
    n = x.count()# 统计个数
    #print(n)
    return m+s/np.sqrt(n)
sns.barplot(x="day",y="total_bill",data=df,ci=95)
plt.show()
print(df.groupby("day").agg({"total_bill":[np.std,custom1]})) # 分组求标准差

sns.barplot(x="day",y="total_bill",data=df,ci=68)
plt.show()
print(df.groupby("day").agg({"total_bill":[np.std,custom2]})) #

​[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pkCx72ui-1658379974318)(output_24_0.png)]

     total_bill
            std    custom1
day
Thur   7.886170  19.645769
Fri    8.302660  20.884910
Sat    9.480419  22.433538
Sun    8.832122  23.395703

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GFyIePmW-1658379974318)(output_24_2.png)]

     total_bill
            std    custom2
day
Thur   7.886170  18.684287
Fri    8.302660  19.056340
Sat    9.480419  21.457787
Sun    8.832122  22.423114

seaborn显示网格

ax=sns.barplot(x="day",y="total_bill",data=df,ci=95)
ax.yaxis.grid(True) # Hide the horizontal gridlines
ax.xaxis.grid(True) # Show the vertical gridlines

Python seaborn barplot画图案例_第10张图片

seaborn设置刻度

fig, ax = plt.subplots(figsize=(10, 8))
sns.barplot(x="day",y="total_bill",data=df,ci=95,ax=ax)
ax.set_yticks([i for i in range(30)])
ax.yaxis.grid(True) # Hide the horizontal gridlines

Python seaborn barplot画图案例_第11张图片

使用其他estaimator

#estimator 指定条形图高度使用相加的和
sns.barplot(x="day",y="total_bill",data=df,estimator=np.sum)
plt.show()
#计算想加和看是否和条形图的高度一致
print(df.groupby("day").agg({"total_bill":[np.sum]}))
'''
     total_bill
            sum
day
Fri      325.88
Sat     1778.40
Sun     1627.16
Thur    1096.33
'''

Python seaborn barplot画图案例_第12张图片

到此这篇关于Python seaborn barplot画图案例的文章就介绍到这了,更多相关Python seaborn barplot 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

你可能感兴趣的:(Python seaborn barplot画图案例)