默认barplot
import seaborn as sns import matplotlib.pyplot as plt import numpy as np sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #默认画条形图 sns.barplot(x="day",y="total_bill",data=df) plt.show() #计算平均值看是否和条形图的高度一致 print(df.groupby("day").agg({"total_bill":[np.mean]})) print(df.groupby("day").agg({"total_bill":[np.std]})) # 注意这个地方error bar显示并不是标准差
total_bill mean day Thur 17.682742 Fri 17.151579 Sat 20.441379 Sun 21.410000 total_bill std day Thur 7.886170 Fri 8.302660 Sat 9.480419 Sun 8.832122
使用案例
# import libraries import seaborn as sns import numpy as np import matplotlib.pyplot as plt # load dataset tips = sns.load_dataset("tips") # Set the figure size plt.figure(figsize=(14, 8)) # plot a bar chart ax = sns.barplot(x="day", y="total_bill", data=tips, estimator=np.mean, ci=85, capsize=.2, color='lightblue')
修改capsize
ax=sns.barplot(x="day",y="total_bill",data=df,capsize=1.0) plt.show()
显示error bar的值
import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #默认画条形图 ax=sns.barplot(x="day",y="total_bill",data=df) plt.show() for p in ax.lines: width = p.get_linewidth() xy = p.get_xydata() # 显示error bar的值 print(xy) print(width) print(p)
[[ 0. 15.85041935] [ 0. 19.64465726]] 2.7 Line2D(_line0) [[ 1. 13.93096053] [ 1. 21.38463158]] 2.7 Line2D(_line1) [[ 2. 18.57236207] [ 2. 22.40351437]] 2.7 Line2D(_line2) [[ 3. 19.66244737] [ 3. 23.50109868]] 2.7 Line2D(_line3)
annotata error bar
fig, ax = plt.subplots(figsize=(8, 6)) sns.barplot(x='day', y='total_bill', data=df, capsize=0.2, ax=ax) # show the mean for p in ax.patches: h, w, x = p.get_height(), p.get_width(), p.get_x() xy = (x + w / 2., h / 2) text = f'Mean:\n{h:0.2f}' ax.annotate(text=text, xy=xy, ha='center', va='center') ax.set(xlabel='day', ylabel='total_bill') plt.show()
error bar选取sd
import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #默认画条形图 sns.barplot(x="day",y="total_bill",data=df,ci="sd",capsize=1.0)## 注意这个ci参数 plt.show() print(df.groupby("day").agg({"total_bill":[np.mean]})) print(df.groupby("day").agg({"total_bill":[np.std]}))
total_bill mean day Thur 17.682742 Fri 17.151579 Sat 20.441379 Sun 21.410000 total_bill std day Thur 7.886170 Fri 8.302660 Sat 9.480419 Sun 8.832122
设置置信区间(68)
import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #默认画条形图 sns.barplot(x="day",y="total_bill",data=df,ci=68,capsize=1.0)## 注意这个ci参数 plt.show()
设置置信区间(95)
import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #默认画条形图 sns.barplot(x="day",y="total_bill",data=df,ci=95) plt.show() #计算平均值看是否和条形图的高度一致 print(df.groupby("day").agg({"total_bill":[np.mean]}))
total_bill mean day Thur 17.682742 Fri 17.151579 Sat 20.441379 Sun 21.410000
dataframe aggregate函数使用
#计算平均值看是否和条形图的高度一致 df = sns.load_dataset("tips") print("="*20) print(df.groupby("day").agg({"total_bill":[np.mean]})) # 分组求均值 print("="*20) print(df.groupby("day").agg({"total_bill":[np.std]})) # 分组求标准差 print("="*20) print(df.groupby("day").agg({"total_bill":"nunique"})) # 这里统计的是不同的数目 print("="*20) print(df.groupby("day").agg({"total_bill":"count"})) # 这里统计的是每个分组样本的数量 print("="*20) print(df["day"].value_counts()) print("="*20)
==================== total_bill mean day Thur 17.682742 Fri 17.151579 Sat 20.441379 Sun 21.410000 ==================== total_bill std day Thur 7.886170 Fri 8.302660 Sat 9.480419 Sun 8.832122 ==================== total_bill day Thur 61 Fri 18 Sat 85 Sun 76 ==================== total_bill day Thur 62 Fri 19 Sat 87 Sun 76 ==================== Sat 87 Sun 76 Thur 62 Fri 19 Name: day, dtype: int64 ====================
dataframe aggregate 自定义函数
import numpy as np import pandas as pd df = pd.DataFrame({'Buy/Sell': [1, 0, 1, 1, 0, 1, 0, 0], 'Trader': ['A', 'A', 'B', 'B', 'B', 'C', 'C', 'C']}) print(df) def categorize(x): m = x.mean() return 1 if m > 0.5 else 0 if m < 0.5 else np.nan result = df.groupby(['Trader'])['Buy/Sell'].agg([categorize, 'sum', 'count']) result = result.rename(columns={'categorize' : 'Buy/Sell'}) result
Buy/Sell Trader 0 1 A 1 0 A 2 1 B 3 1 B 4 0 B 5 1 C 6 0 C 7 0 C
dataframe aggregate 自定义函数2
df = sns.load_dataset("tips") #默认画条形图 def custom1(x): m = x.mean() s = x.std() n = x.count()# 统计个数 #print(n) return m+1.96*s/np.sqrt(n) def custom2(x): m = x.mean() s = x.std() n = x.count()# 统计个数 #print(n) return m+s/np.sqrt(n) sns.barplot(x="day",y="total_bill",data=df,ci=95) plt.show() print(df.groupby("day").agg({"total_bill":[np.std,custom1]})) # 分组求标准差 sns.barplot(x="day",y="total_bill",data=df,ci=68) plt.show() print(df.groupby("day").agg({"total_bill":[np.std,custom2]})) #
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pkCx72ui-1658379974318)(output_24_0.png)]
total_bill std custom1 day Thur 7.886170 19.645769 Fri 8.302660 20.884910 Sat 9.480419 22.433538 Sun 8.832122 23.395703
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GFyIePmW-1658379974318)(output_24_2.png)]
total_bill std custom2 day Thur 7.886170 18.684287 Fri 8.302660 19.056340 Sat 9.480419 21.457787 Sun 8.832122 22.423114
seaborn显示网格
ax=sns.barplot(x="day",y="total_bill",data=df,ci=95) ax.yaxis.grid(True) # Hide the horizontal gridlines ax.xaxis.grid(True) # Show the vertical gridlines
seaborn设置刻度
fig, ax = plt.subplots(figsize=(10, 8)) sns.barplot(x="day",y="total_bill",data=df,ci=95,ax=ax) ax.set_yticks([i for i in range(30)]) ax.yaxis.grid(True) # Hide the horizontal gridlines
使用其他estaimator
#estimator 指定条形图高度使用相加的和 sns.barplot(x="day",y="total_bill",data=df,estimator=np.sum) plt.show() #计算想加和看是否和条形图的高度一致 print(df.groupby("day").agg({"total_bill":[np.sum]})) ''' total_bill sum day Fri 325.88 Sat 1778.40 Sun 1627.16 Thur 1096.33 '''
到此这篇关于Python seaborn barplot画图案例的文章就介绍到这了,更多相关Python seaborn barplot 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!