机器学习主要面对两类问题:回归和分类。不过一个问题属于分类还是回归的界定却并不清晰。比如点击率预估输入样本的Label是0-曝光和1-点击,输出的是用户点击的概率,是一个连续值,你说点击率是回归问题还是分类问题?从目标来看输出一个率值而非类别应该算回归,但从输入来看是标签离散的,应该算是分类。
本质上这两类问题是一体两面的,分类模型可将回归模型的输出离散化,回归模型也可将分类模型的输出连续化,主要看任务目标是什么。分类和回归最大的不同可能在于对于损失函数的选择上。主要区别在于:
损失函数的一般表示为 L(y,f(x)),用以衡量真实值 y和预测值 f(x)之间不一致的程度,一般越小越好。为了便于不同损失函数的比较,常将其表示为单变量的函数,在回归问题中这个变量为 [y-f(x)] :残差表示,在分类问题中则为 yf(x) : 趋势一致。
# Tensorflow中集成的函数
mse = tf.losses.mean_squared_error(y_true, y_pred)
# 利用Tensorflow基础函数手工实现
mse = tf.reduce_mean(tf.square(y_true - y_pred))
maes = tf.losses.absolute_difference(y_true, y_pred)
maes_loss = tf.reduce_sum(maes)
核心思想是,检测真实值(y_true)和预测值(y_pred)之差的绝对值在超参数 δ 内时,使用 MSE 来计算 loss, 在 δ 外时使用类 MAE 计算 loss。sklearn 关于 huber 回归的文档中建议将 δ=1.35 以达到 95% 的有效性。
hubers = tf.losses.huber_loss(y_true, y_pred)
hubers_loss = tf.reduce_sum(hubers)
使用时,一定不要将预测值(y_pred)进行 sigmoid 处理,否则会影响训练的准确性,因为函数内部已经包含了 sigmoid 激活(若已先行 sigmoid 处理过了,则 tensorflow 提供了另外的函数) 。真实值(y_true)则要求是 One-hot 编码形式。
函数求得的结果是一组向量,是每个维度单独的交叉熵,loss的形状和labels是相同的,也是[batch_size, num_classes],如果想求总的交叉熵,使用 tf.reduce_sum() 相加即可;如果想求 loss ,则使用 tf.reduce_mean() 进行平均。
# Tensorflow中集成的函数
sigmoids = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=y_pred)
sigmoids_loss = tf.reduce_mean(sigmoids)
# 利用Tensorflow基础函数手工实现
y_pred_si = 1.0/(1+tf.exp(-y_pred))
sigmoids = -y_true*tf.log(y_pred_si) - (1-y_true)*tf.log(1-y_pred_si)
sigmoids_loss = tf.reduce_mean(sigmoids)
预测值(y_pred)计算完成后,若已先行进行了 sigmoid 处理,则使用此函数求 loss ,若还没经过 sigmoid 处理,可直接使用 sigmoid_cross_entropy_with_logits。
# Tensorflow中集成的函数
logs = tf.losses.log_loss(labels=y, logits=y_pred)
logs_loss = tf.reduce_mean(logs)
# 利用Tensorflow基础函数手工实现
logs = -y_true*tf.log(y_pred) - (1-y_true)*tf.log(1-y_pred)
logs_loss = tf.reduce_mean(logs)
使用时,预测值(y_pred)同样是没有经过 softmax 处理过的值,真实值(y_true)要求是 One-hot 编码形式。
softmaxs = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=y_pred)
softmaxs_loss = tf.reduce_mean(softmaxs)
tf v1.8之前为 tf.nn.softmax_cross_entropy_with_logits(),新函数修补了旧函数的不足,两者在使用方法上是一样的。
若真实值(y_true)不是 One-hot 格式的,可以使用此函数,可省略一步转换
softmaxs_sparse = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=y_pred)
softmaxs_sparse_loss = tf.reduce_mean(softmaxs_sparse)
增加了一个权重的系数,用来平衡正、负样本差距,可在一定程度上解决差距过大时训练结果严重偏向大样本的情况。
# Tensorflow中集成的函数
sigmoids_weighted = tf.nn.weighted_cross_entropy_with_logits(targets=y, logits=y_pred, pos_weight)
sigmoids_weighted_loss = tf.reduce_mean(sigmoids_weighted)
# 利用Tensorflow基础函数手工实现
sigmoids_weighted = -y_true*tf.log(y_pred) * weight - (1-y_true)*tf.log(1-y_pred)
sigmoids_loss = tf.reduce_mean(sigmoids)
hinge_loss 是为了求出不同类别间的“最大间隔”,此特性尤其适用于 SVM(支持向量机)。使用 SVM 做分类,与 LR(Logistic Regression 对数几率回归)相比,其优点是小样本量便有不错效果、对噪点包容性强,缺点是样本量大时效率低、有时很难找到合适的区分方法。
hings = tf.losses.hinge_loss(labels=y, logits=y_pred, weights)
hings_loss = tf.reduce_mean(hings)
标准的损失函数并不合适所有场景,有些实际的背景需要采用自己构造的损失函数,Tensorflow 也提供了丰富的基础函数供自行构建。
例如下面的例子:当预测值(y_pred)比真实值(y_true)大时,使用 (y_pred-y_true)*loss_more 作为 loss,反之,使用 (y_true-y_pred)*loss_less
loss = tf.reduce_sum(tf.where(tf.greater(y_pred, y_true), (y_pred-y_true)*loss_more,(y_true-y_pred)*loss_less))
tf.greater(x, y):判断 x 是否大于 y,当维度不一致时广播后比较
tf.where(condition, x, y):当 condition 为 true 时返回 x,否则返回 y
tf.reduce_mean():沿维度求平均
tf.reduce_sum():沿维度相加
tf.reduce_prod():沿维度相乘
tf.reduce_min():沿维度找最小
tf.reduce_max():沿维度找最大
使用 Tensorflow 提供的方法可自行构造想要的损失函数。
如何理解深度学习源码里经常出现的logits
知乎-分类与回归区别是什么?
常见回归和分类损失函数比较
Tensorflow 中的损失函数 —— loss 专题汇总
样本不同损失权重