kafka消息中间件
1.解耦:允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
2.冗余:
消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的"插入-获取-删除"范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。
3.扩展性:
因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。
4.灵活性 & 峰值处理能力:
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
5.可恢复性:
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
6.顺序保证:
在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。(Kafka 保证一个 Partition 内的消息的有序性)
7.缓冲:
有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。
8.异步通信:
很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。
Kafka的吞吐量几乎是行业里最优秀的,在常规的机器配置下,一台机器可以达到每秒十几万的QPS,可谓是消息中间件中的顶尖水平。所以一般选型我们都不用其他的,用kafka做消息中间件就够了。(当然如果你topic特别多,并发特别高,阿里的RocketMQ更合适,后面找时间写一篇关于两者的区别。kafka偏吞吐量高的应用,因为其采用的socket长连接方式,如果消费者特别多其实会有空转现象。有人说这个时候扩容啊?但是扩了很多机器都没用是为什么?因为partition没有变多,其实这个时候需要扩大都是partition的数量。好具体我们后面解释)
kafaka官网:
https://kafka.apache.org书签:Apache Kafka
Kafka是最初由Linkedin公司开发,是一个分布式、分区的、多副本的、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx日志、访问日志,消息服务等等,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。
主要应用场景是:日志收集系统和消息系统(最为消息又有状态通知或者是数据传输的功能。但是尽量用第一种,不要设计太大的消息,不然存在堵死网络的风险。包括redis的key设计也一样,不要设计超过100kb大小的内容)。
Kafka主要设计目标如下:
以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能。
高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条消息的传输。
支持Kafka Server间的消息分区,及分布式消费,同时保证每个partition内的消息顺序传输。
同时支持离线数据处理和实时数据处理。
相关概念:
1.producer:
消息生产者,发布消息到 kafka 集群的终端或服务。
2.broker:
kafka 集群中包含的服务器。
3.topic:
每条发布到 kafka 集群的消息属于的类别,即 kafka 是面向 topic 的。
4.partition:
partition 是物理上的概念,每个 topic 包含一个或多个 partition。kafka 分配的单位是 partition。
5.consumer:
从 kafka 集群中消费消息的终端或服务,每个consumer都会分配一个partition去消费,除非有consumer发生了改变,kafka会根据算法去重新负载分配。(注:这里可能会产生负载风暴(rebalance风暴),所以不要连接太多消费者或者说要控制负载的频率)
6.Consumer group:
high-level consumer API 中,每个 consumer 都属于一个 consumer group,每条消息只能被 consumer group 中的一个 Consumer 消费(单播),但可以被多个 consumer group 消费(多播)。
7.replica:
partition 的副本,保障 partition 的高可用。
8.leader:
replica 中的一个角色, producer 和 consumer 只跟 leader 交互。
9.follower:
replica 中的一个角色,从 leader 中复制数据。
10.controller:
kafka 集群中的其中一个服务器,用来进行 leader election 以及 各种 failover。
12.zookeeper:
kafka 通过 zookeeper 来存储集群的 meta 信息。
producer 采用 push 模式将消息发布到 broker,每条消息都被 append 到 patition 中,属于连续存储,连续写到磁盘的同一个区域,而且消息记录不会被删除。
因为硬盘是机械结构,每次读写都会寻址,写入,其中寻址是一个“机械动作”,它是最耗时的。所以硬盘最“讨厌”随机I/O,最喜欢顺序I/O。为了提高读写硬盘的速度,Kafka就是使用顺序I/O。
每条消息都被append到该Partition中,属于顺序写磁盘,因此效率非常高。但是,有人把kafka当作数据库用,这是不理智的。因为每次查数据都要去scan这个连续存储区。
对于传统的message queue而言,一般会删除已经被消费的消息,而Kafka是不会删除数据的,它会把所有的数据都保留下来,每个消费者(Consumer)对每个Topic都有一个offset用来表示读取到了第几条数据。
即便是顺序写入硬盘,硬盘的访问速度还是不可能追上内存。所以Kafka的数据并不是实时的写入硬盘,它充分利用了现代操作系统分页存储来利用内存提高I/O效率。
在Linux Kernal 2.2之后出现了一种叫做“零拷贝(zero-copy)”系统调用机制,就是跳过“用户缓冲区”的拷贝,建立一个磁盘空间和内存空间的直接映射,数据不再复制到“用户态缓冲区”系统上下文切换减少2次,可以提升一倍性能。(redis的rdb方式也与这个类似)
通过mmap,进程像读写硬盘一样读写内存(当然是虚拟机内存)。使用这种方式可以获取很大的I/O提升,省去了用户空间到内核空间复制的开销(调用文件的read会把数据先放到内核空间的内存中,然后再复制到用户空间的内存中。)
消费者(读取数据)
试想一下,一个Web Server传送一个静态文件,如何优化?答案是zero copy。传统模式下我们从硬盘读取一个文件是这样的。
先复制到内核空间(read是系统调用,放到了DMA,所以用内核空间),然后复制到用户空间(1、2);从用户空间重新复制到内核空间(你用的socket是系统调用,所以它也有自己的内核空间),最后发送给网卡(3、4)。
Zero Copy中直接从内核空间(DMA的)到内核空间(Socket的),然后发送网卡。这个技术非常普遍,Nginx也是用的这种技术。
实际上,Kafka把所有的消息都存放在一个一个的文件中,当消费者需要数据的时候Kafka直接把“文件”发送给消费者。当不需要把整个文件发出去的时候,Kafka通过调用Zero Copy的sendfile这个函数,这个函数包括:
out_fd作为输出(一般及时socket的句柄)
in_fd作为输入文件句柄
off_t表示in_fd的偏移(从哪里开始读取)
size_t表示读取多少个
3.2 消息路由
producer 发送消息到 broker 时,会根据分区算法选择将其存储到哪一个 partition。其路由机制为:
指定了 patition,则直接使用;
未指定 patition 但指定 key,通过对 key 的 value 进行hash 选出一个 patition
patition 和 key 都未指定,使用轮询选出一个 patition。
附上 java 客户端分区源码,一目了然:
//创建消息实例
public ProducerRecord(String topic, Integer partition, Long timestamp, K key, V value) {
if (topic == null)
throw new IllegalArgumentException("Topic cannot be null");
if (timestamp != null && timestamp < 0)
throw new IllegalArgumentException("Invalid timestamp " + timestamp);
this.topic = topic;
this.partition = partition;
this.key = key;
this.value = value;
this.timestamp = timestamp;
}
//计算 patition,如果指定了 patition 则直接使用,否则使用 key 计算
private int partition(ProducerRecord<K, V> record, byte[] serializedKey , byte[] serializedValue, Cluster cluster) {
Integer partition = record.partition();
if (partition != null) {
List<PartitionInfo> partitions = cluster.partitionsForTopic(record.topic());
int lastPartition = partitions.size() - 1;
if (partition < 0 || partition > lastPartition) {
throw new IllegalArgumentException(String.format("Invalid partition given with record: %d is not in the range [0...%d].", partition, lastPartition));
}
return partition;
}
return this.partitioner.partition(record.topic(), record.key(), serializedKey, record.value(), serializedValue, cluster);
}
// 使用 key 选取 patition
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
int numPartitions = partitions.size();
if (keyBytes == null) {
int nextValue = counter.getAndIncrement();
List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
if (availablePartitions.size() > 0) {
int part = DefaultPartitioner.toPositive(nextValue) % availablePartitions.size();
return availablePartitions.get(part).partition();
} else {
return DefaultPartitioner.toPositive(nextValue) % numPartitions;
}
} else {
//对 keyBytes 进行 hash 选出一个 patition
return DefaultPartitioner.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
}
}
Java
producer 写入消息序列图如下所示:
producer 先从 zookeeper 的 "/brokers/.../state" 节点找到该 partition 的 leader
producer 将消息发送给该 leader
leader 将消息写入本地 log
followers 从 leader pull 消息,写入本地 log 后 leader 发送 ACK
leader 收到所有 ISR 中的 replica 的 ACK 后,增加 HW(high watermark,最后 commit 的 offset) 并向producer 发送 ACK
kafka发送者producer一般采用异步去发送,但是由于kafaka很快所以我们可以采用批量推送的形式去推,不要每次都去,不然应用的线程就会暴增,可能会导致应用挂掉。
多个patrtion,多个consumer其实很难直接保障消息的消费顺序。
比如说我们建了一个 topic,有三个 partition。生产者在写的时候,其实可以指定一个 key,比如说我们指定了某个订单 id 作为 key,那么这个订单相关的数据,一定会被分发到同一个 partition 中去,而且这个 partition 中的数据一定是有顺序的。
消费者从 partition 中取出来数据的时候,也一定是有顺序的。到这里,顺序还是 ok 的,没有错乱。接着,我们在消费者里可能会搞多个线程来并发处理消息。因为如果消费者是单线程消费处理,而处理比较耗时的话,比如处理一条消息耗时几十 ms,那么 1 秒钟只能处理几十条消息,这吞吐量太低了。而多个线程并发跑的话,顺序可能就乱掉了。
解决方案
一个 topic,一个 partition,一个 consumer,内部单线程消费,单线程吞吐量太低,一般不会用这个。
写 N 个内存 queue,具有相同 key 的数据都到同一个内存 queue;然后对于 N 个线程,每个线程分别消费一个内存 queue 即可,这样就能保证顺序性。
Kafka数据传输的事务特点
at most once:最多一次,这个和JMS中"非持久化"消息类似,发送一次,无论成败,将不会重发。消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中出现了异常,导致部分消息未能继续处理。那么此后"未处理"的消息将不能被fetch到,这就是"at most once"。
at least once:消息至少发送一次,如果消息未能接受成功,可能会重发,直到接收成功。消费者fetch消息,然后处理消息,然后保存offset。如果消息处理成功之后,但是在保存offset阶段zookeeper异常导致保存操作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once",原因offset没有及时的提交给zookeeper,zookeeper恢复正常还是之前offset状态。
exactly once:消息只会发送一次。kafka中并没有严格的去实现(基于2阶段提交),我们认为这种策略在kafka中是没有必要的。
通常情况下"at-least-once"是我们首选。
尽管 Kafka 的跨边界事件发布机制显得相当优雅,但毕竟这是一个分布式系统,因此系统可能会有很多错误。我们将关注也许是最常见的恼人问题:消费者可能无法成功处理其消费的消息。
重试主题:流行的解决方案
消费者尝试消费主要主题中的一条消息。
如果未能正确消费该消息,则消费者将消息发布到第一个重试主题,然后提交消息的偏移量,以便继续处理下一条消息。
订阅重试主题的是重试消费者,它包含与主消费者相同的逻辑。该消费者在消息消费尝试之间引入了短暂的延迟。如果这个消费者也无法消费该消息,则会将该消息发布到另一个重试主题,并提交该消息的偏移量。
这一过程继续,并增加了一些重试主题和重试消费者,每个重试的延迟越来越多(用作退避策略)。最后,在最终重试消费者无法处理某条消息后,该消息将发布到一个死信队列(Dead Letter Queue,DLQ)中,工程团队将在该队列中对其进行手动分类。
当然这个模式仍然有些问题,必须会有消息的有序性和可恢复错误的情况:详情可观看这个文档
https://blog.csdn.net/zhipengfang/article/details/117455550?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_title~default-1.fixedcolumn&spm=1001.2101.3001.4242.2书签:兄弟!kafka的重试机制,你可能用错了~_方志朋的博客-CSDN博客
consumer 采用 pull 模式从 broker 中读取数据。
push 模式很难适应消费速率不同的消费者,因为消息发送速率是由 broker 决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成 consumer 来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而 pull 模式则可以根据 consumer 的消费能力以适当的速率消费消息。
对于 Kafka 而言,pull 模式更合适,它可简化 broker 的设计,consumer 可自主控制消费消息的速率,同时 consumer 可以自己控制消费方式——即可批量消费也可逐条消费,同时还能选择不同的提交方式从而实现不同的传输语义。
consumer delivery guarantee
如果将 consumer 设置为 autocommit,consumer 一旦读到数据立即自动 commit。如果只讨论这一读取消息的过程,那 Kafka 确保了 Exactly once。
但实际使用中应用程序并非在 consumer 读取完数据就结束了,而是要进行进一步处理,而数据处理与 commit 的顺序在很大程度上决定了consumer delivery guarantee:
1.读完消息先 commit 再处理消息。
这种模式下,如果 consumer 在 commit 后还没来得及处理消息就 crash 了,下次重新开始工作后就无法读到刚刚已提交而未处理的消息,这就对应于 At most once
2.读完消息先处理再 commit。
这种模式下,如果在处理完消息之后 commit 之前 consumer crash 了,下次重新开始工作时还会处理刚刚未 commit 的消息,实际上该消息已经被处理过了。这就对应于 At least once。
3.如果一定要做到 Exactly once,就需要协调 offset 和实际操作的输出。
精典的做法是引入两阶段提交。如果能让 offset 和操作输入存在同一个地方,会更简洁和通用。这种方式可能更好,因为许多输出系统可能不支持两阶段提交。比如,consumer 拿到数据后可能把数据放到 HDFS,如果把最新的 offset 和数据本身一起写到 HDFS,那就可以保证数据的输出和 offset 的更新要么都完成,要么都不完成,间接实现 Exactly once。(目前就 high-level API而言,offset 是存于Zookeeper 中的,无法存于HDFS,而SimpleConsuemr API的 offset 是由自己去维护的,可以将之存于 HDFS 中)
总之,Kafka 默认保证 At least once,并且允许通过设置 producer 异步提交来实现 At most once(见文章《kafka consumer防止数据丢失》)。而 Exactly once 要求与外部存储系统协作,幸运的是 kafka 提供的 offset 可以非常直接非常容易得使用这种方式。
更多关于 kafka 传输语义的信息请参考《Message Delivery Semantics》。
Consumer rebalance
当有 consumer 加入或退出、以及 partition 的改变(如 broker 加入或退出)时会触发 rebalance。consumer rebalance算法如下:
. 将目标 topic 下的所有 partirtion 排序,存于PT
. 对某 consumer group 下所有 consumer 排序,存于 CG,第 i 个consumer 记为 Ci
. N=size(PT)/size(CG),向上取整
. 解除 Ci 对原来分配的 partition 的消费权(i从0开始)
. 将第i*N到(i+1)*N-1个 partition 分配给 Ci
在 0.8.*版本,每个 consumer 都只负责调整自己所消费的 partition,为了保证整个consumer group 的一致性,当一个 consumer 触发了 rebalance 时,该 consumer group 内的其它所有其它 consumer 也应该同时触发 rebalance。这会导致以下几个问题:
1.Herd effect
任何 broker 或者 consumer 的增减都会触发所有的 consumer 的 rebalance
2.Split Brain
每个 consumer 分别单独通过 zookeeper 判断哪些 broker 和 consumer 宕机了,那么不同 consumer 在同一时刻从 zookeeper 看到的 view 就可能不一样,这是由 zookeeper 的特性决定的,这就会造成不正确的 reblance 尝试。
调整结果不可控
所有的 consumer 都并不知道其它 consumer 的 rebalance 是否成功,这可能会导致 kafka 工作在一个不正确的状态。
基于以上问题,kafka 设计者考虑在0.9.*版本开始使用中心 coordinator 来控制 consumer rebalance,然后又从简便性和验证要求两方面考虑,计划在 consumer 客户端实现分配方案。(见文章《Kafka Detailed Consumer Coordinator Design》和《Kafka Client-side Assignment Proposal》),此处不再赘述。
部分参考:
kafka学习笔记:知识点整理_wr_java的博客-CSDN博客一、为什么需要消息系统1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的"插入-获取-删除"范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。3.扩展性: 因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。4.灵活性https://blog.csdn.net/wr_java/article/details/107939092?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163862461916780271953494%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=163862461916780271953494&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_v2~rank_v29-1-107939092.pc_v2_rank_blog_default&utm_term=kafak&spm=1018.2226.3001.4450