基于PSO优化VIC算法的WORM蠕虫检测matlab仿真

目录

一、理论基础

二、案例背景

1.问题描述

2.思路流程

三、部分MATLAB程序

四、仿真结论分析

五、算法相关应用

六、参考文献


一、理论基础

根据参考文献:

基于PSO优化VIC算法的WORM蠕虫检测matlab仿真_第1张图片

 初始条件

计算曲率

角度的计算公式 

基于PSO优化VIC算法的WORM蠕虫检测matlab仿真_第2张图片    基于PSO优化VIC算法的WORM蠕虫检测matlab仿真_第3张图片 

那么对于坐标点,其满足如下的计算公式,

二、案例背景

1.问题描述

       给定一组初始值,构造出虚拟图。初始值就是如下图图一 x0, y0, θ(0)那行,给出曲线的初始点和初始角度,构造出曲线。曲线中的current point x的坐标可以由θ(s)求出,θ(s)可以由初始值求出。 如下图一所示 K(s)是一条曲线的曲率,用傅里叶级数表达然后求出角θ(s),这样,这条曲线就被描绘出来了,然后用这条曲线构造一个virtual object,如图二所示。 这个object 是曲线以半径r外扩得到的长条形曲面,如图所示。

基于PSO优化VIC算法的WORM蠕虫检测matlab仿真_第4张图片

2.思路流程

      本课题我们主要通过VIC算法检测得到曲线的中线,然后根据这个中线进行扩展,得到光滑曲线体,本课题的这个研究过程和实际的蠕虫建模方法非常的接近,这是由于光滑曲线体和蠕虫的建模,他们都是通过中线检测进行的。此外,本课题还对传统的VIC算法进行了改进,通过使用PSO粒子群优化算法,从而大大提供的光滑曲线的建模精度。

      通过PSO粒子群优化算法,对原有的VIC算法进行参数进行优化,从而得到更高精度的虚拟曲线的建模。通过仿真对比可知,采用优化算法之后的虚拟曲线,其精度比原算法的精度提高了10倍以上。

三、部分MATLAB程序

VIC算法部分:

function I2 = func_Virtual_Image(X,Y,X_img,Y_img,L,Ls,r,theta);

%然后用这条曲线构造一个virtual object,如图二所示。 这个object 是曲线以半径r外扩得到的长条形曲面,如图所示。
%进行扩展
I2 = 50*ones(L,L);
    
for kk = 1:r

    X1  = zeros(L/Ls,1);
    Y1  = zeros(L/Ls,1);
    X2  = zeros(L/Ls,1);
    Y2  = zeros(L/Ls,1);

    for i = 1:L/Ls
        if mod(sum(theta(1:i)),180) < 0
           X1(i) = X(i) + kk*cos(pi*theta(i)/180);
           Y1(i) = Y(i) - kk*sin(pi*theta(i)/180);
           X2(i) = X(i) - kk*cos(pi*theta(i)/180);
           Y2(i) = Y(i) + kk*sin(pi*theta(i)/180);   
        else
           X1(i) = X(i) + kk*cos(pi/2 - pi*theta(i)/180);
           Y1(i) = Y(i) - kk*sin(pi/2 - pi*theta(i)/180);
           X2(i) = X(i) - kk*cos(pi/2 - pi*theta(i)/180);
           Y2(i) = Y(i) + kk*sin(pi/2 - pi*theta(i)/180); 
        end
    end

    %将X和Y曲线变化为实际图像信息
    for i = 1:L/Ls
        Xp1(i) = floor(X1(i));
        Yp1(i) = floor(Y1(i));
        Xp2(i) = floor(X2(i));
        Yp2(i) = floor(Y2(i));    
    end

    X_img1 = L-Yp1;
    Y_img1 = Xp1;
    X_img2 = L-Yp2;
    Y_img2 = Xp2;


    for i = 1:L/Ls
        I2(X_img(i),Y_img(i)) = 255;  
        
        if r==1
           I2(X_img1(i),Y_img1(i)) = 255 - kk*120;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*120;  
        end
        if r==2
           I2(X_img1(i),Y_img1(i)) = 255 - kk*90;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*90;  
        end        
        if r==3
           I2(X_img1(i),Y_img1(i)) = 255 - kk*80;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*80;  
        end        
        if r==4
           I2(X_img1(i),Y_img1(i)) = 255 - kk*60;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*60;  
        end        
        if r==5
           I2(X_img1(i),Y_img1(i)) = 255 - kk*50;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*50;  
        end          
        if r==6
           I2(X_img1(i),Y_img1(i)) = 255 - kk*40;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*40;  
        end         
        if r==7
           I2(X_img1(i),Y_img1(i)) = 255 - kk*35;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*35;  
        end         
        if r==8
           I2(X_img1(i),Y_img1(i)) = 255 - kk*30;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*30;  
        end         
        
        if r==9
           I2(X_img1(i),Y_img1(i)) = 255 - kk*25;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*25;  
        end
        if r==10
           I2(X_img1(i),Y_img1(i)) = 255 - kk*25;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*25;  
        end        
        if r==11
           I2(X_img1(i),Y_img1(i)) = 255 - kk*23;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*23;  
        end        
        if r==12
           I2(X_img1(i),Y_img1(i)) = 255 - kk*21;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*21;  
        end        
        if r==13
           I2(X_img1(i),Y_img1(i)) = 255 - kk*19;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*19;  
        end          
        if r==14
           I2(X_img1(i),Y_img1(i)) = 255 - kk*18;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*18;  
        end         
        if r==15
           I2(X_img1(i),Y_img1(i)) = 255 - kk*17;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*17;  
        end         
        if r==16
           I2(X_img1(i),Y_img1(i)) = 255 - kk*16;  
           I2(X_img2(i),Y_img2(i)) = 255 - kk*16;  
        end        
        
        
        
        
    end
    
end

I2 = medfilt2(I2,[5,5]);

PSO优化:

while iterfpbest(i)
                fpbest(i)   = J;
                Xpbest(:,i) = X(:,i);
            end 
      end
      [fitnessmax,index]=max(fpbest);
      if fitnessmax>fgbest
         fgbest=fitnessmax;
         Xgbest=X(:,index);
      end
      for i=1:N
          r1    = rand; 
          r2    = rand;
          fai1   = C1*r1;
          fai2   = C2*r2;  
          V(:,i)  = w(iter) * V(:,i) +fai1 *( Xpbest(:,i) - X(:,i) ) +
fai2 * ( Xgbest(:,1) - X(:,i) );
          index  = find(abs(V(:,i))>Vmax);
          if(any(index))
             V(index,i) = V(index,i)./abs(V(index,i)).*Vmax;
          end
          X(:,i) = X(:,i)+V(:,i);
      end
      fgbest_fig(iter)  = fgbest;
      Xgbest_fig(:,iter) = Xgbest;  
      alpha(1)        = Xgbest_fig(1,iter);
      alpha(2)        = Xgbest_fig(2,iter);
      alpha(3)        = Xgbest_fig(3,iter);
      V_scores       = func_cal_score(alpha,L,m,Theta,Ls,Xt,Yt,r,I2);      
      V_score2(iter)   = V_scores;   
end

VIC算法的主程序调用:

............................

%然后用这条曲线构造一个virtual object,如图二所示。 这个object 是曲线以半径r外扩得到的长条形曲面,如图所示。
%进行扩展
X1  = zeros(L/Ls,1);
Y1  = zeros(L/Ls,1);
X2  = zeros(L/Ls,1);
Y2  = zeros(L/Ls,1);

for i = 1:L/Ls
    if mod(sum(theta(1:i)),180) < 0
       X1(i) = X(i) + r*cos(pi*theta(i)/180);
       Y1(i) = Y(i) - r*sin(pi*theta(i)/180);
       X2(i) = X(i) - r*cos(pi*theta(i)/180);
       Y2(i) = Y(i) + r*sin(pi*theta(i)/180);   
    else
       X1(i) = X(i) + r*cos(pi/2 - pi*theta(i)/180);
       Y1(i) = Y(i) - r*sin(pi/2 - pi*theta(i)/180);
       X2(i) = X(i) - r*cos(pi/2 - pi*theta(i)/180);
       Y2(i) = Y(i) + r*sin(pi/2 - pi*theta(i)/180); 
    end
end


if Ls == 1
   figure;
   subplot(121)
   plot(X,Y,'b');hold on;
   plot(X,Y,'k.');hold on;
   plot(X1,Y1,'r');hold on;
   plot(X2,Y2,'r');hold on;
   for i = 1:length(X)
       line([X2(i),X1(i)],[Y2(i),Y1(i)],'Color',[1 0 1]);hold on;
   end
   title('virtual object');
   grid on
   axis square
   axis([0,L,0,L]);
else
   figure;
   plot(X,Y,'b');hold on;
   plot(X,Y,'k.');hold on;
   plot(X1,Y1,'r');hold on;
   plot(X2,Y2,'r');hold on;
   for i = 1:length(X)
       line([X2(i),X1(i)],[Y2(i),Y1(i)],'Color',[1 0 1]);hold on;
   end
   title('virtual object');
   grid on
   axis square
   axis([0,L,0,L]);   
end




%产生虚拟图像
%将X和Y曲线变化为实际图像信息
I2 = func_Virtual_Image(X,Y,X_img,Y_img,L,Ls,r,theta);
if Ls == 1
   subplot(122)
   imshow(I2,[])
   title('被描绘出来的曲线');
   axis square
end
 

四、仿真结论分析

基于PSO优化VIC算法的WORM蠕虫检测matlab仿真_第5张图片

 基于PSO优化VIC算法的WORM蠕虫检测matlab仿真_第6张图片

 基于PSO优化VIC算法的WORM蠕虫检测matlab仿真_第7张图片

基于PSO优化VIC算法的WORM蠕虫检测matlab仿真_第8张图片

基于PSO优化VIC算法的WORM蠕虫检测matlab仿真_第9张图片

    从上面的仿真结果可知,通过粒子群优化之后,系统的Score值不断逼近0,这说明通过粒子群优化之后,得到的光滑曲线值的精度达到了最大值。从左图可知,当系统的优化达到优化预期时,系统的最佳适应度值达到最佳值,接近1。

 基于PSO优化VIC算法的WORM蠕虫检测matlab仿真_第10张图片

    从上图的仿真结果可知,当优化之后,系统的仿真参数达到收敛预期。最后输出的参数值,就可以使系统的曲线建模达到最高精度。

五、算法相关应用

      通过所研究的VIC算法,可以有效检测输出医学上的蠕虫检测,从而提高医学诊断等目标 。

六、参考文献

[1] Semin B ,  Auradou H ,  Francois M . Curvilinear shapes by Virtual Image Correlation[J]. Europhysics News, 2011, 42(6):p.17-18.A10-10&12

你可能感兴趣的:(MATLAB,板块9:二维三维空间定位,matlab,VIC算法,WORM蠕虫检测)