【slowfast 损失函数改进】深度学习网络通用改进方案:slowfast的损失函数(使用focal loss解决不平衡数据)改进

目录

  • 引言
  • 二,项目搭建
    • 2.1 平台选择
    • 2.2 开始搭建
  • 三,数据集
    • 3.1 数据集下载
    • 3.2 上传数据集
    • 3.3 数据集的统计
  • 四,项目运行
    • 4.1 focal loss
    • 4.2 训练前准备
    • 4.3 slowfast对数据集训练
    • 4.4 改进的slowfast对数据集训练
    • 4.5 实验对比
    • 4.6 实时查看GPU使用情况

引言

我最近一个月都在写论文,反反复复改了不下20次。我觉得还是写博客舒服,只要把思路写清楚就可以,不用在乎用词和语法问题。

本文所写的改进方案适合数据集中数据存在不平衡的情况。数据越失衡,效果越好。

b站:https://www.bilibili.com/video/BV1Ta411x7nL/

二,项目搭建

使用的项目的例子就用我之前的slowfast项目:
01【mmaction2 slowfast 行为分析(商用级别)】项目下载
02【mmaction2 slowfast 行为分析(商用级别)】项目demo搭建

2.1 平台选择

我还是用极链AI:https://cloud.videojj.com/auth/register?inviter=18452&activityChannel=student_invite
创建实例:
在这里插入图片描述
在这里插入图片描述

2.2 开始搭建

进入home

cd home

下载项目

git clone https://github.com/Wenhai-Zhu/JN-OpenLib-mmaction2.git

或者用码云(国内速度快)

git clone https://gitee.com/YFwinston/JN-OpenLib-mmaction2.git

在这里插入图片描述
环境搭建(AI云平台的操作方法)

pip install mmcv-full==1.2.7 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.6.0/index.html

pip install mmpycocotools

pip install moviepy  opencv-python terminaltables seaborn decord -i https://pypi.douban.com/simple

环境搭建(非云平台的操作方法)

conda create -n JN-OpenLib-mmaction2-pytorch1.6-py3.6  -y python=3.6
conda activate JN-OpenLib-mmaction2-pytorch1.6-py3.6
pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
 pip install mmcv-full==1.2.7 -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html
pip install mmpycocotools
pip install moviepy  opencv-python terminaltables seaborn decord -i https://pypi.douban.com/simple

进入JN-OpenLib-mmaction2

cd JN-OpenLib-mmaction2/
python setup.py develop

注意:上面的 cu102/torch1.6.0 一定要和创建环境的配置一直,cuda版本,torch版本

三,数据集

3.1 数据集下载

我们先在AI云平台上创建上传数据集,这个数据集是一个监控打架的数据集

链接: https://pan.baidu.com/s/1wI7PVB9g5k6CcVDOfICW7A 提取码: du5o

这个数据集有6个动作分类:

options={'0':'None','1':'handshake', '2':'point', '3':'hug', '4':'push','5':'kick', '6':'punch'}

3.2 上传数据集

我们要把数据集放到数据AI云平台的数据管理的位置,放在这个位置,方便我们创建的所有实例的使用。

在根目录下,进入user-data

cd user-data

创建slowfastDataSet文件夹

mkdir slowfastDataSet

上传数据集:采用下面链接对应的方法
https://cloud.videojj.com/help/docs/data_manage.html#vcloud-oss-cli
在这里插入图片描述
数据集上传到slowfastDataSet文件夹下
在这里插入图片描述
在这里插入图片描述

3.3 数据集的统计

使用本文的改进方案,最重要的就是确保这个数据集是不平衡的,所以,我们来对这个数据集每个类别进行数据统计,看看数据集是不是不平衡的。

我们在AI平台上创建一个notebook(要在这里面写数据集统计代码)
在这里插入图片描述

重命名为dataTemp.ipynb
在这里插入图片描述
代码如下:

import json
#统计数据集中训练集/测试集的数据分布
file_dir = "/user-data/slowfastDataSet/Datasets/Interaction/annotations/train/"
#file_dir = "/user-data/slowfastDataSet/Datasets/Interaction/annotations/test/"

#训练集/测试集下文件名字
names = ['seq1','seq2','seq3','seq4','seq6','seq7','seq8','seq9','seq11','seq12',
         'seq13','seq14','seq16','seq17','seq18','seq19']
#names = ['seq5','seq10','seq15','seq20']

#动作类别统计
action1=0
action2=0
action3=0
action4=0
action5=0
action6=0

#开始统计
for name in names:
    file_name = file_dir + name + '.json'
    f = open(file_name, encoding='utf-8')
    setting = json.load(f)  # 把json文件转化为python用的类型
    f.close()



    for file_1 in setting['metadata']:
        str = file_1.split("_")
        if str[1].isdigit():
            action = setting['metadata'][file_1]['av']['1']
            actions = action.split(",")
            if '1' in actions:
                action1 = 1 + action1
            if '2' in actions:
                action2 = 1 + action2
            if '3' in actions:
                action3 = 1 + action3
            if '4' in actions:
                action4 = 1 + action4
            if '5' in actions:
                action5 = 1 + action5
            if '6' in actions:
                action6 = 1 + action6

print("action1",action1)
print("action2",action2)
print("action3",action3)
print("action4",action4)
print("action5",action5)
print("action6",action6)

当我们对训练集进行统计时:
结果:

action1 1011
action2 709
action3 757
action4 358
action5 250
action6 320

当我们对测试集进行统计时:
结果:

action1 243
action2 132
action3 209
action4 95
action5 64
action6 94

我们在用excel,把这些图用图表的形式展示出来。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
从上面统计数据来看,可以判断这个数据集是不平衡的。

四,项目运行

4.1 focal loss

简而言之,focal loss的作用就是将预测值低的类,赋予更大的损失函数权重,在不平衡的数据中,难分类别的预测值低,那么这些难分样本的损失函数被赋予的权重就更大。
在这里插入图片描述

4.2 训练前准备

创建链接 /user-data/slowfastDataSet/Datasets 文件夹的软链接:
先进入JN-OpenLib-mmaction2

cd JN-OpenLib-mmaction2

创建软链接

ln -s /user-data/slowfastDataSet/Datasets  data

在这里插入图片描述

4.3 slowfast对数据集训练

python tools/train.py configs/detection/via3/my_slowfast_kinetics_pretrained_r50_8x8x1_20e_via3_rgb.py --validate

在这里插入图片描述
在这里插入图片描述
这里红色框出来的地方代表训练剩余时间

4.4 改进的slowfast对数据集训练

修改slowfast损失函数的位置:home/JN-OpenLib-mmaction2/mmaction/models/heads/bbox_head.py

在这里插入图片描述

class F_BCE(nn.Module):
    def __init__(self, pos_weight=1, reduction='mean'):
        super(F_BCE, self).__init__()
        self.pos_weight = pos_weight
        self.reduction = reduction

    def forward(self, logits, target):
        # logits: [N, *], target: [N, *]
        logits = F.sigmoid(logits)

        loss = - self.pos_weight * target * (1-logits)**2 * torch.log(logits) - \
               (1 - target) * logits**2 * torch.log(1 - logits)
        
        if self.reduction == 'mean':
            loss = loss.mean()
        elif self.reduction == 'sum':
            loss = loss.sum()
        return loss

在这里插入图片描述

        self.f_bce = F_BCE()
        self.BN = nn.BatchNorm1d(8)

在这里插入图片描述

            cls_score = self.BN(cls_score)

            f_bce_loss = self.f_bce
            losses['loss_action_cls'] = f_bce_loss(cls_score, labels)

在这里插入图片描述
bbox_head.py完整代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F

from mmaction.core.bbox import bbox_target

try:
    from mmdet.models.builder import HEADS as MMDET_HEADS
    mmdet_imported = True
except (ImportError, ModuleNotFoundError):
    mmdet_imported = False
class F_BCE(nn.Module):
    def __init__(self, pos_weight=1, reduction='mean'):
        super(F_BCE, self).__init__()
        self.pos_weight = pos_weight
        self.reduction = reduction

    def forward(self, logits, target):
        # logits: [N, *], target: [N, *]
        logits = F.sigmoid(logits)

        loss = - self.pos_weight * target * (1-logits)**2 * torch.log(logits) - \
               (1 - target) * logits**2 * torch.log(1 - logits)
        
        if self.reduction == 'mean':
            loss = loss.mean()
        elif self.reduction == 'sum':
            loss = loss.sum()
        return loss



class BBoxHeadAVA(nn.Module):
    """Simplest RoI head, with only two fc layers for classification and
    regression respectively.

    Args:
        temporal_pool_type (str): The temporal pool type. Choices are 'avg' or
            'max'. Default: 'avg'.
        spatial_pool_type (str): The spatial pool type. Choices are 'avg' or
            'max'. Default: 'max'.
        in_channels (int): The number of input channels. Default: 2048.
        num_classes (int): The number of classes. Default: 81.
        dropout_ratio (float): A float in [0, 1], indicates the dropout_ratio.
            Default: 0.
        dropout_before_pool (bool): Dropout Feature before spatial temporal
            pooling. Default: True.
        topk (int or tuple[int]): Parameter for evaluating multilabel accuracy.
            Default: (3, 5)
        multilabel (bool): Whether used for a multilabel task. Default: True.
            (Only support multilabel == True now).
    """

    def __init__(
            self,
            temporal_pool_type='avg',
            spatial_pool_type='max',
            in_channels=2048,
            # The first class is reserved, to classify bbox as pos / neg
            num_classes=81,
            dropout_ratio=0,
            dropout_before_pool=True,
            topk=(3, 5),
            multilabel=True,
            loss_cfg = None):
        super(BBoxHeadAVA, self).__init__()
        assert temporal_pool_type in ['max', 'avg']
        assert spatial_pool_type in ['max', 'avg']
        self.temporal_pool_type = temporal_pool_type
        self.spatial_pool_type = spatial_pool_type

        self.in_channels = in_channels
        self.num_classes = num_classes

        self.dropout_ratio = dropout_ratio
        self.dropout_before_pool = dropout_before_pool

        self.multilabel = multilabel

        if topk is None:
            self.topk = ()
        elif isinstance(topk, int):
            self.topk = (topk, )
        elif isinstance(topk, tuple):
            assert all([isinstance(k, int) for k in topk])
            self.topk = topk
        else:
            raise TypeError('topk should be int or tuple[int], '
                            f'but get {type(topk)}')
        # Class 0 is ignored when calculaing multilabel accuracy,
        # so topk cannot be equal to num_classes
        assert all([k < num_classes for k in self.topk])

        # Handle AVA first
        assert self.multilabel

        in_channels = self.in_channels
        # Pool by default
        if self.temporal_pool_type == 'avg':
            self.temporal_pool = nn.AdaptiveAvgPool3d((1, None, None))
        else:
            self.temporal_pool = nn.AdaptiveMaxPool3d((1, None, None))
        if self.spatial_pool_type == 'avg':
            self.spatial_pool = nn.AdaptiveAvgPool3d((None, 1, 1))
        else:
            self.spatial_pool = nn.AdaptiveMaxPool3d((None, 1, 1))

        if dropout_ratio > 0:
            self.dropout = nn.Dropout(dropout_ratio)

        self.fc_cls = nn.Linear(in_channels, num_classes)
        self.debug_imgs = None
        
        self.f_bce = F_BCE()
        self.BN = nn.BatchNorm1d(6)

    def init_weights(self):
        nn.init.normal_(self.fc_cls.weight, 0, 0.01)
        nn.init.constant_(self.fc_cls.bias, 0)

    def forward(self, x):
        if self.dropout_before_pool and self.dropout_ratio > 0:
            x = self.dropout(x)

        x = self.temporal_pool(x)
        x = self.spatial_pool(x)

        if not self.dropout_before_pool and self.dropout_ratio > 0:
            x = self.dropout(x)

        x = x.view(x.size(0), -1)
        cls_score = self.fc_cls(x)
        # We do not predict bbox, so return None
        return cls_score, None

    def get_targets(self, sampling_results, gt_bboxes, gt_labels,
                    rcnn_train_cfg):
        pos_proposals = [res.pos_bboxes for res in sampling_results]
        neg_proposals = [res.neg_bboxes for res in sampling_results]
        pos_gt_labels = [res.pos_gt_labels for res in sampling_results]
        cls_reg_targets = bbox_target(pos_proposals, neg_proposals,
                                      pos_gt_labels, rcnn_train_cfg)
        return cls_reg_targets

    def recall_prec(self, pred_vec, target_vec):
        """
        Args:
            pred_vec (tensor[N x C]): each element is either 0 or 1
            target_vec (tensor[N x C]): each element is either 0 or 1

        """
        correct = pred_vec & target_vec
        # Seems torch 1.5 has no auto type conversion
        recall = correct.sum(1) / (target_vec.sum(1).float()+ 1e-6)
        prec = correct.sum(1) / (pred_vec.sum(1) + 1e-6)
        return recall.mean(), prec.mean()

    def multilabel_accuracy(self, pred, target, thr=0.5):
        pred = pred.sigmoid()
        pred_vec = pred > thr
        # Target is 0 or 1, so using 0.5 as the borderline is OK
        target_vec = target > 0.5
        recall_thr, prec_thr = self.recall_prec(pred_vec, target_vec)

        recalls, precs = [], []
        for k in self.topk:
            _, pred_label = pred.topk(k, 1, True, True)
            pred_vec = pred.new_full(pred.size(), 0, dtype=torch.bool)

            num_sample = pred.shape[0]
            for i in range(num_sample):
                pred_vec[i, pred_label[i]] = 1
            recall_k, prec_k = self.recall_prec(pred_vec, target_vec)
            recalls.append(recall_k)
            precs.append(prec_k)
        return recall_thr, prec_thr, recalls, precs


    def loss(self,
             cls_score,
             bbox_pred,
             rois,
             labels,
             label_weights,
             bbox_targets=None,
             bbox_weights=None,
             reduce=True):
        losses = dict()
        if cls_score is not None:
            # Only use the cls_score
            #labels = labels[:, 1:]
            # pos_inds = torch.sum(labels, dim=-1) > 0
            # cls_score = cls_score[pos_inds, 1:]
            # labels = labels[pos_inds]
            labels = labels[:, 1:]
            cls_score = cls_score[:, 1:]
            
            cls_score = self.BN(cls_score)

            f_bce_loss = self.f_bce
            losses['loss_action_cls'] = f_bce_loss(cls_score, labels)
            
            #bce_loss = F.binary_cross_entropy_with_logits
            #losses['loss_action_cls'] = bce_loss(cls_score, labels)
            recall_thr, prec_thr, recall_k, prec_k = self.multilabel_accuracy(
                cls_score, labels, thr=0.5)
            losses['recall@thr=0.5'] = recall_thr
            losses['prec@thr=0.5'] = prec_thr
            for i, k in enumerate(self.topk):
                losses[f'recall@top{k}'] = recall_k[i]
                losses[f'prec@top{k}'] = prec_k[i]
        return losses

    def get_det_bboxes(self,
                       rois,
                       cls_score,
                       img_shape,
                       flip=False,
                       crop_quadruple=None,
                       cfg = None):

        # might be used by testing w. augmentation
        if isinstance(cls_score, list):
            cls_score = sum(cls_score) / float(len(cls_score))

        assert self.multilabel

        scores = cls_score.sigmoid() if cls_score is not None else None
        bboxes = rois[:, 1:]
        assert bboxes.shape[-1] == 4

        # First reverse the flip
        img_h, img_w = img_shape
        if flip:
            bboxes_ = bboxes.clone()
            bboxes_[:, 0] = img_w - 1 - bboxes[:, 2]
            bboxes_[:, 2] = img_w - 1 - bboxes[:, 0]
            bboxes = bboxes_

        # Then normalize the bbox to [0, 1]
        bboxes[:, 0::2] /= img_w
        bboxes[:, 1::2] /= img_h

        def _bbox_crop_undo(bboxes, crop_quadruple):
            decropped = bboxes.clone()

            if crop_quadruple is not None:
                x1, y1, tw, th = crop_quadruple
                decropped[:, 0::2] = bboxes[..., 0::2] * tw + x1
                decropped[:, 1::2] = bboxes[..., 1::2] * th + y1

            return decropped

        bboxes = _bbox_crop_undo(bboxes, crop_quadruple)
        return bboxes, scores


if mmdet_imported:
    MMDET_HEADS.register_module()(BBoxHeadAVA)


开始训练:

python tools/train.py configs/detection/via3/my_slowfast_kinetics_pretrained_r50_8x8x1_20e_via3_rgb.py --validate

4.5 实验对比

经过15个小时的训练

首先是原模型(改进前)
来看看结果

0s2021-11-04 11:26:56,234 - mmaction - INFO - 
Evaluateing data/Interaction/annotations/test/seq5.json with 556 images now
2021-11-04 11:26:56,234 - mmaction - INFO - Evaluating mAP ...
==> 0.035635 seconds to process groundtruth results
==> 0.0550323 seconds to process prediction results
==> 0.122445 seconds to Convert groundtruth
==> 0.302411 seconds to convert prediction
==> 0.0125372 seconds to run_evaluator
mAP@0.5IOU=     0.822277391327469
PerformanceByCategory/AP@0.5IOU/handshake=      0.8867924528301887
PerformanceByCategory/AP@0.5IOU/point=  0.6091617933723197
PerformanceByCategory/AP@0.5IOU/hug=    0.7931456548347613
PerformanceByCategory/AP@0.5IOU/push=   0.8666666666666667
PerformanceByCategory/AP@0.5IOU/kick=   0.7
PerformanceByCategory/AP@0.5IOU/punch=  0.9945054945054945
2021-11-04 11:26:56,766 - mmaction - INFO - 
mAP@0.5IOU       0.8223
2021-11-04 11:26:56,768 - mmaction - INFO - 
Evaluateing data/Interaction/annotations/test/seq10.json with 557 images now
2021-11-04 11:26:56,768 - mmaction - INFO - Evaluating mAP ...
==> 0.0580194 seconds to process groundtruth results
==> 0.0607066 seconds to process prediction results
==> 0.097141 seconds to Convert groundtruth
==> 0.315272 seconds to convert prediction
==> 0.015708 seconds to run_evaluator
mAP@0.5IOU=     0.40562803653484647
PerformanceByCategory/AP@0.5IOU/handshake=      0.45454545454545453
PerformanceByCategory/AP@0.5IOU/point=  0.391812865497076
PerformanceByCategory/AP@0.5IOU/hug=    0.6896551724137931
PerformanceByCategory/AP@0.5IOU/push=   0.37356321839080453
PerformanceByCategory/AP@0.5IOU/kick=   0.0
PerformanceByCategory/AP@0.5IOU/punch=  0.0
2021-11-04 11:26:57,318 - mmaction - INFO - 
mAP@0.5IOU       0.4056
2021-11-04 11:26:57,318 - mmaction - INFO - 
Evaluateing data/Interaction/annotations/test/seq15.json with 607 images now
2021-11-04 11:26:57,318 - mmaction - INFO - Evaluating mAP ...
==> 0.0335379 seconds to process groundtruth results
==> 0.0631692 seconds to process prediction results
==> 0.10759 seconds to Convert groundtruth
==> 0.37948 seconds to convert prediction
==> 0.0157986 seconds to run_evaluator
mAP@0.5IOU=     0.5331220241603439
PerformanceByCategory/AP@0.5IOU/handshake=      0.8571428571428571
PerformanceByCategory/AP@0.5IOU/point=  0.25
PerformanceByCategory/AP@0.5IOU/hug=    0.7222222222222222
PerformanceByCategory/AP@0.5IOU/push=   0.452991452991453
PerformanceByCategory/AP@0.5IOU/kick=   0.1
PerformanceByCategory/AP@0.5IOU/punch=  0.38461538461538464
2021-11-04 11:26:57,921 - mmaction - INFO - 
mAP@0.5IOU       0.5331
2021-11-04 11:26:57,921 - mmaction - INFO - 
Evaluateing data/Interaction/annotations/test/seq20.json with 622 images now
2021-11-04 11:26:57,921 - mmaction - INFO - Evaluating mAP ...
==> 0.0534511 seconds to process groundtruth results
==> 0.085907 seconds to process prediction results
==> 0.128184 seconds to Convert groundtruth
==> 0.38158 seconds to convert prediction
==> 0.0196507 seconds to run_evaluator
mAP@0.5IOU=     0.49892216373873616
PerformanceByCategory/AP@0.5IOU/handshake=      0.5131485429992891
PerformanceByCategory/AP@0.5IOU/point=  0.5477982978485432
PerformanceByCategory/AP@0.5IOU/hug=    0.8906976744186047
PerformanceByCategory/AP@0.5IOU/push=   0.42094630515683146
PerformanceByCategory/AP@0.5IOU/kick=   0.0
PerformanceByCategory/AP@0.5IOU/punch=  0.17647058823529413
2021-11-04 11:26:58,594 - mmaction - INFO - 
mAP@0.5IOU       0.4989
2021-11-04 11:26:58,599 - mmaction - INFO - Epoch(val) [20][2643]       0_mAP@0.5IOU: 0.8223, 1_mAP@root@61826ea1b4e40269dc480687:/home/JN-OpenLib-mmaction2# , [email protected]: 0.5650

可以看出原模型最后准确率:56.50%

然后是改进后的模型

Evaluateing data/Interaction/annotations/test/seq5.json with 556 images now
2021-11-04 12:14:31,246 - mmaction - INFO - Evaluating mAP ...
==> 0.0391157 seconds to process groundtruth results
==> 0.0535824 seconds to process prediction results
==> 0.127968 seconds to Convert groundtruth
==> 0.653159 seconds to convert prediction
==> 0.0301211 seconds to run_evaluator
mAP@0.5IOU=     0.9069741460566432
PerformanceByCategory/AP@0.5IOU/handshake=      0.9942538308459411
PerformanceByCategory/AP@0.5IOU/point=  0.6242095754290875
PerformanceByCategory/AP@0.5IOU/hug=    0.9607235142118863
PerformanceByCategory/AP@0.5IOU/push=   1.0
PerformanceByCategory/AP@0.5IOU/kick=   0.9636363636363636
PerformanceByCategory/AP@0.5IOU/punch=  0.9395604395604397
2021-11-04 12:14:32,155 - mmaction - INFO - 
mAP@0.5IOU       0.9070
2021-11-04 12:14:32,155 - mmaction - INFO - 
Evaluateing data/Interaction/annotations/test/seq10.json with 557 images now
2021-11-04 12:14:32,156 - mmaction - INFO - Evaluating mAP ...
==> 0.0397999 seconds to process groundtruth results
==> 0.0588491 seconds to process prediction results
==> 0.0968714 seconds to Convert groundtruth
==> 0.665299 seconds to convert prediction
==> 0.0389373 seconds to run_evaluator
mAP@0.5IOU=     0.7747222320890791
PerformanceByCategory/AP@0.5IOU/handshake=      0.9065866429798629
PerformanceByCategory/AP@0.5IOU/point=  0.8147161450436735
PerformanceByCategory/AP@0.5IOU/hug=    0.9150861013434618
PerformanceByCategory/AP@0.5IOU/push=   0.9839296652614131
PerformanceByCategory/AP@0.5IOU/kick=   0.5192805038670355
PerformanceByCategory/AP@0.5IOU/punch=  0.43140462721305534
2021-11-04 12:14:33,073 - mmaction - INFO - 
mAP@0.5IOU       0.7747
2021-11-04 12:14:33,073 - mmaction - INFO - 
Evaluateing data/Interaction/annotations/test/seq15.json with 607 images now
2021-11-04 12:14:33,073 - mmaction - INFO - Evaluating mAP ...
==> 0.0371342 seconds to process groundtruth results
==> 0.0646772 seconds to process prediction results
==> 0.101891 seconds to Convert groundtruth
==> 0.739635 seconds to convert prediction
==> 0.0439842 seconds to run_evaluator
mAP@0.5IOU=     0.7889970077502289
PerformanceByCategory/AP@0.5IOU/handshake=      0.8908877061148943
PerformanceByCategory/AP@0.5IOU/point=  0.8125
PerformanceByCategory/AP@0.5IOU/hug=    0.9966124661246613
PerformanceByCategory/AP@0.5IOU/push=   0.6567905778432095
PerformanceByCategory/AP@0.5IOU/kick=   0.7602408702408703
PerformanceByCategory/AP@0.5IOU/punch=  0.4837407437954634
2021-11-04 12:14:34,069 - mmaction - INFO - 
mAP@0.5IOU       0.7890
2021-11-04 12:14:34,070 - mmaction - INFO - 
Evaluateing data/Interaction/annotations/test/seq20.json with 622 images now
2021-11-04 12:14:34,070 - mmaction - INFO - Evaluating mAP ...
==> 0.0685616 seconds to process groundtruth results
==> 0.0815992 seconds to process prediction results
==> 0.108798 seconds to Convert groundtruth
==> 0.813663 seconds to convert prediction
==> 0.0507228 seconds to run_evaluator
mAP@0.5IOU=     0.7211447472837192
PerformanceByCategory/AP@0.5IOU/handshake=      0.9027139539608279
PerformanceByCategory/AP@0.5IOU/point=  0.4597024418984696
PerformanceByCategory/AP@0.5IOU/hug=    0.9709107878976433
PerformanceByCategory/AP@0.5IOU/push=   0.7328256368708507
PerformanceByCategory/AP@0.5IOU/kick=   0.7415679515722716
PerformanceByCategory/AP@0.5IOU/punch=  0.35279228700716714
2021-11-04 12:14:35,201 - mmaction - INFO - 
mAP@0.5IOU       0.7211
2021-11-04 12:14:35,207 - mmaction - INFO - Epoch(val) [20][2643]       0_mAP@0.5IOU: 0.9070, 1_mAP@0.5IOU: 0.7747, 2_mAP@0.5IOU: 0.7890, 3_mAP@0.5IOU: 0.7211, all_mAP@0.5IOU: 0.7980

可以看出原模型最后准确率:79.80%
可以看出这是明显的提高

4.6 实时查看GPU使用情况

参考:https://blog.csdn.net/u014261408/article/details/109853936

有人写了个小工具gpustat把nvidia-smi封装了起来,用起来很爽很方便,推荐给大家。
首先安装:

pip install gpustat

然后使用:

gpustat -cp

输出为:
在这里插入图片描述

注意-c选项为显示进程名,-p选项为显示进程PID。如果想要不间断持续输出,请使用:

gpustat -cp -i 1

在这里插入图片描述

你可能感兴趣的:(深度学习,slowfast,损失函数改进,focalLoss,不平衡数据)