通过PyTorch构建的LeNet-5网络对手写数字进行训练和识别

      调用PyTorch相关接口实现一个LeNet-5网络,然后通过MNIST数据集训练模型,最后对生成的模型进行预测,主要包括2大部分:训练和预测

      1.训练部分:

      (1).加载MNIST数据集,通过调用TorchVision模块中的接口实现,将每幅图像缩放到32*32大小,小批量数据集数量设置为32;

      (2).设置网络参数的初始值,这样保证每次重新训练时初始值都是固定的,便于查找定位问题;

      (3).设计LeNet-5网络,并实例化一个网络对象,重载了__init__和forward两个函数,使用到的layer包括Conv2d、AvgPool2d、Linear;激活函数使用Tanh:

      (4).指定优化算法,这里采用Adam;

      (5).指定损失函数,这里采用CrossEntropyLoss;

      (6).训练,epochs设置为10,给出每次的训练结果;

      (7).保存模型,推荐使用state_dict。

      代码段如下:

def load_mnist_dataset(img_size, batch_size):
    '''下载并加载mnist数据集
        img_size: 图像大小,宽高长度相同
        batch_size: 小批量数据集数量
    '''

    # 对PIL图像先进行缩放操作,然后转换成tensor类型
    transforms_ = transforms.Compose([transforms.Resize(size=(img_size, img_size)), transforms.ToTensor()])

    '''下载MNIST数据集
        root: mnist数据集存放目录名
        train: 可选参数, 默认为True; 若为True,则从MNIST/processed/training.pt创建数据集;若为False,则从MNIST/processed/test.pt创建数据集
        transform: 可选参数, 默认为None; 接收PIL图像并作处理
        target_transform: 可选参数, 默认为None
        download: 可选参数, 默认为False; 若为True,则从网络上下载数据集到root指定的目录
    '''
    train_dataset = datasets.MNIST(root="mnist_data", train=True, transform=transforms_, target_transform=None, download=True)
    valid_dataset = datasets.MNIST(root="mnist_data", train=False, transform=transforms_, target_transform=None, download=False)

    # 加载MNIST数据集:shuffle为True,则在每次epoch时重新打乱顺序
    train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
    valid_loader = DataLoader(dataset=valid_dataset, batch_size=batch_size, shuffle=False)

    return train_loader, valid_loader, train_dataset, valid_dataset

class LeNet5(nn.Module):
    '''构建lenet网络'''

    def __init__(self, n_classes: int) -> None:
        super(LeNet5, self).__init__() # 调用父类Module的构造方法
        # n_classes: 类别数

        # nn.Sequential: 顺序容器,Module将按照它们在构造函数中传递的顺序添加,它允许将整个容器视为单个module
        self.feature_extractor = nn.Sequential( # 输入32*32
            nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=0), # 卷积层,28*28*6
            nn.Tanh(), # 激活函数Tanh,使其值范围在(-1, 1)内
            nn.AvgPool2d(kernel_size=2, stride=None, padding=0), # 平均池化层,14*14*6
            nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0), # 10*10*16
            nn.Tanh(),
            nn.AvgPool2d(kernel_size=2, stride=None, padding=0), # 5*5*16
            nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1, padding=0), # 1*1*120
            nn.Tanh()
        )

        self.classifier = nn.Sequential( # 输入1*1*120
            nn.Linear(in_features=120, out_features=84), # 全连接层,84
            nn.Tanh(),
            nn.Linear(in_features=84, out_features=n_classes) # 10
        )

    # LeNet5继承nn.Module,定义forward函数后,backward函数就会利用Autograd被自动实现
    # 只要实例化一个LeNet5对象并传入对应的参数x就可以自动调用forward函数
    def forward(self, x: Tensor):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
        x = self.feature_extractor(x)
        x = torch.flatten(input=x, start_dim=1) # 将输入按指定展平,start_dim=1则第一维度不变,后面的展平
        logits = self.classifier(x)
        probs = F.softmax(input=logits, dim=1) # 激活函数softmax: 使得每一个元素的范围都在(0,1)之间,并且所有元素的和为1
        return logits, probs

def validate(valid_loader, model, criterion, device):
    '''Function for the validation step of the training loop'''

    model.eval() # 将网络设置为评估模式
    running_loss = 0

    for X, y_true in valid_loader:
        X = X.to(device) # 将数据导入到指定的设备上(cpu或gpu)
        y_true = y_true.to(device)

        # Forward pass and record loss
        y_hat, _ = model(X) # 前向传播:调用Module的__call__方法, 此方法内会调用指定网络(如LeNet5)的forward方法
        loss = criterion(y_hat, y_true) # 计算loss,同上,通过__call__方法调用指定损失函数类(如CrossEntropyLoss)中的forward方法
        running_loss += loss.item() * X.size(0)

    epoch_loss = running_loss / len(valid_loader.dataset)
    return model, epoch_loss

def get_accuracy(model, data_loader, device):
    '''Function for computing the accuracy of the predictions over the entire data_loader'''

    correct_pred = 0
    n = 0

    with torch.no_grad(): # 临时将循环内的所有Tensor的requires_grad标志设置为False,不再计算Tensor的梯度(自动求导)
        model.eval() # 将网络设置为评估模式
        for X, y_true in data_loader:

            X = X.to(device) # 将数据导入到指定的设备上(cpu或gpu)
            y_true = y_true.to(device)

            _, y_prob = model(X) # y_prob.size(): troch.Size([32, 10]): [cols, rows]
             # torch.max(input):返回Tensor中所有元素的最大值
             # torch.max(input, dim):按维度dim返回最大值,并且返回索引
             # dim=0: 返回每一列中最大值的那个元素,并且返回索引
             # dim=1: 返回每一行中最大值的那个元素,并且返回索引
            _, predicted_labels = torch.max(y_prob, 1)

            n += y_true.size(0)
            correct_pred += (predicted_labels == y_true).sum()

    return correct_pred.float() / n

def train(train_loader, model, criterion, optimizer, device):
    '''Function for the training step of the training loop'''

    model.train() # 将网络设置为训练模式
    running_loss = 0

    for X, y_true in train_loader: # 先调用DataLoader类的__iter__函数,接着循环调用_DataLoaderIter类的__next__函数
        # X.size(shape: [n,c,h,w]): torch.Size([32, 1, 32, 32]); y_true.size: torch.Size([32]); n为batch_size
        optimizer.zero_grad() # 将优化算法中的梯度重置为0,需要在计算下一个小批量数据集的梯度之前调用它,否则梯度将累积到现有的梯度中

        # 将Tensor数据导入到指定的设备上(cpu或gpu)
        X = X.to(device)
        y_true = y_true.to(device)

        y_hat, _ = model(X) # 前向传播:调用Module的__call__方法, 此方法内会调用指定网络(如LeNet5)的forward方法
        # y_hat.size(): torch.Size([32, 10]); _.size(): torch.Size([32, 10])
        loss = criterion(y_hat, y_true) # 计算loss,同上,通过__call__方法调用指定损失函数类(如CrossEntropyLoss)中的forward方法
        running_loss += loss.item() * X.size(0)

        loss.backward() # 反向传播,使用Autograd自动计算标量的当前梯度
        optimizer.step() # 根据梯度更新网络参数,优化器通过.grad中存储的梯度来调整每个参数

    epoch_loss = running_loss / len(train_loader.dataset)
    return model, optimizer, epoch_loss

def training_loop(model, criterion, optimizer, train_loader, valid_loader, epochs, device, print_every=1):
    '''Function defining the entire training loop
        model: 网络对象
        criterion: 损失函数对象
        optimizer: 优化算法对象
        train_loader: 训练数据集对象
        valid_loader: 测试数据集对象
        epochs: 重复训练整个训练数据集的次数
        device: 指定在cpu上还是在gpu上运行
        print_every: 每训练几次打印一次训练结果
    '''

    train_losses = []
    valid_losses = []

    for epoch in range(0, epochs):
        model, optimizer, train_loss = train(train_loader, model, criterion, optimizer, device)
        train_losses.append(train_loss)

        # 每次训练完后通过测试数据集进行评估
        with torch.no_grad(): # 临时将循环内的所有Tensor的requires_grad标志设置为False,不再计算Tensor的梯度(自动求导)
            model, valid_loss = validate(valid_loader, model, criterion, device)
            valid_losses.append(valid_loss)

        if epoch % print_every == (print_every - 1):
            train_acc = get_accuracy(model, train_loader, device=device)
            valid_acc = get_accuracy(model, valid_loader, device=device)

            print(f'  {datetime.now().time().replace(microsecond=0)}:'
                  f' Epoch: {epoch}', f' Train loss: {train_loss:.4f}', f' Valid loss: {valid_loss:.4f}'
                  f' Train accuracy: {100 * train_acc:.2f}', f' Valid accuracy: {100 * valid_acc:.2f}')

    return model, optimizer, (train_losses, valid_losses)

def train_and_save_model():
    print("#### start training ... ####")
    print("1. load mnist dataset")
    train_loader, valid_loader, _, _ = load_mnist_dataset(img_size=32, batch_size=32)

    print("2. fixed random init value")
    # 用于设置随机初始化;如果不设置每次训练时的网络初始化都是随机的,导致结果不确定;如果设置了,则每次初始化都是固定的
    torch.manual_seed(seed=42)
    #print("value:", torch.rand(1), torch.rand(1), torch.rand(1)) # 运行多次,每次输出的值都是相同的,[0, 1)

    print("3. instantiate lenet net object")
    model = LeNet5(n_classes=10).to('cpu') # 在CPU上运行
    print("4. specify the optimization algorithm: Adam")
    optimizer = torch.optim.Adam(params=model.parameters(), lr=0.001) # 定义优化算法:Adam是一种基于梯度的优化算法
    print("5. specify the loss function: CrossEntropyLoss")
    criterion = nn.CrossEntropyLoss() # 定义损失函数:交叉熵损失

    print("6. repeated training")
    model, _, _ = training_loop(model, criterion, optimizer, train_loader, valid_loader, epochs=10, device='cpu') # epochs为遍历训练整个数据集的次数

    print("7. save model")
    model_name = "../../../data/Lenet-5.pth"
    #torch.save(model, model_name) # 保存整个模型, 对应于model = torch.load
    torch.save(model.state_dict(), model_name) # 推荐:只保存模型训练好的参数,对应于model.load_state_dict(torch.load)

      执行结果如下所示:

通过PyTorch构建的LeNet-5网络对手写数字进行训练和识别_第1张图片

      2.手写数字图像识别部分:

      (1).加载模型,推荐使用load_state_dict,对应于保存模型时使用的state_dict;

      (2).设置网络到评估模式;

      (3).准备测试图像,一共10幅,0到9各一幅,如下图所示,注意:训练图像背景色为黑色,而测试图像背景色为白色:

      (4).依次对每幅图像进行识别。

      代码段如下所示:

def list_files(filepath, filetype):
    '''遍历指定目录下的指定文件'''

    paths = []
    for root, dirs, files in os.walk(filepath):
        for file in files:
            if file.lower().endswith(filetype.lower()):
                paths.append(os.path.join(root, file))
    return paths

def get_image_label(image_name, image_name_suffix):
    '''获取测试图像对应label'''

    index = image_name.rfind("/")
    if index == -1:
        print(f"Error: image name {image_name} is not supported")

    sub = image_name[index+1:]
    label = sub[:len(sub)-len(image_name_suffix)]
    return label

def image_predict():
    print("#### start predicting ... ####")
    print("1. load model")
    model_name = "../../../data/Lenet-5.pth"
    model = LeNet5(n_classes=10).to('cpu') # 实例化一个网络对象
    model.load_state_dict(torch.load(model_name)) # 加载模型

    print("2. set net to evaluate mode")
    model.eval()

    print("3. prepare test images")
    image_path = "../../../data/image/handwritten_digits/"
    image_name_suffix = ".png"
    images_name = list_files(image_path, image_name_suffix)

    print("4. image recognition")
    with torch.no_grad():
        for image_name in images_name:
            #print("image name:", image_name)
            label = get_image_label(image_name, image_name_suffix)

            img = cv2.imread(image_name, cv2.IMREAD_GRAYSCALE)
            img = cv2.resize(img, (32, 32))
            # MNIST图像背景为黑色,而测试图像的背景色为白色,识别前需要做转换
            img = cv2.bitwise_not(img)
            #print("img shape:", img.shape)

            # 将opencv image转换到pytorch tensor
            transform = transforms.ToTensor()
            tensor = transform(img) # tensor shape: torch.Size([1, 32, 32])
            tensor = tensor.unsqueeze(0) # tensor shape: torch.Size([1, 1, 32, 32])
            #print("tensor shape:", tensor.shape)

            _, y_prob = model(tensor)
            _, predicted_label = torch.max(y_prob, 1)
            print(f"  predicted label: {predicted_label.item()}, ground truth label: {label}")

      执行结果如下图所示:

通过PyTorch构建的LeNet-5网络对手写数字进行训练和识别_第2张图片

      GitHub: https://github.com/fengbingchun/PyTorch_Test

你可能感兴趣的:(PyTorch,PyTorch,LeNet)