MySQL全局锁、表锁、行锁、间隙锁

1.全局锁

学习丁奇(林晓斌)老师MySQL实战45讲课程后提炼的笔记!!!

根据加锁的范围,MySQL里面的锁大致可以分成全局锁、表级锁和行锁三类。

全局锁就是对整个数据库实例加锁。Flush tables with read lock (FTWRL).当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。

全局锁的典型使用场景是,做全库逻辑备份。
如果你在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆;
如果你在从库上备份,那么备份期间从库不能执行主库同步过来的binlog,会导致主从延迟。

官方自带的逻辑备份工具是mysqldump。当mysqldump使用参数–single-transaction的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于MVCC的支持,这个过程中数据是可以正常更新的。一致性读是好,但前提是引擎要支持这个隔离级别。对于MyISAM这种不支持事务的引擎,就需要使用FTWRL命令了。

既然要全库只读,为什么不使用set global readonly=true的方式呢?

一是,在有些系统中,readonly的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。
二是,在异常处理机制上有差异。如果执行FTWRL命令之后由于客户端发生异常断开,那么MySQL会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为readonly之后,如果客户端发生异常,则数据库就会一直保持readonly状态,这样会导致整个库长时间处于不可写状态,风险较高。

2.表级锁

MySQL里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。

表锁的语法是 lock tables … read/write。与FTWRL类似,可以用unlock tables主动释放锁,也可以在客户端断开的时候自动释放。需要注意,lock tables语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。

举个例子, 如果在某个线程A中执行lock tables t1 read, t2 write; 这个语句,则其他线程写t1、读写t2的语句都会被阻塞。同时,线程A在执行unlock tables之前,也只能执行读t1、读写t2的操作。连写t1都不允许,自然也不能访问其他表。

另一类表级的锁是MDL(metadata lock)。

在MySQL 5.5版本中引入了MDL。当对一个表做增删改查操作的时候,加MDL读锁;当要对表做结构变更操作的时候,加MDL写锁。

读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。
读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执

如何安全地给小表加字段?

首先我们要解决长事务,事务不提交,就会一直占着MDL锁。在MySQL的information_schema 库的 innodb_trx 表中,你可以查到当前执行中的事务。如果你要做DDL变更的表刚好有长事务在执行,要考虑先暂停DDL,或者kill掉这个长事务。

对于高频请求的表,使用超时时间限制。在这个指定的等待时间里面拿不到MDL写锁就放弃。
MariaDB已经合并了AliSQL的这个功能,所以这两个开源分支目前都支持DDL NOWAIT/WAIT n这个语法。

3.行锁

行锁就是针对数据表中行记录的锁。这很好理解,比如事务A更新了一行,而这时候事务B也要更新同一行,则必须等事务A的操作完成后才能进行更新。

MySQL全局锁、表锁、行锁、间隙锁_第1张图片事务B的update语句会被阻塞,直到事务A执行commit之后,事务B才能继续执行。
事务A持有的两个记录的行锁,都是在commit的时候才释放的。

在InnoDB事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。

如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。

简化一下电影院购票系统:
1.从顾客A账户余额中扣除电影票价;
2. 给影院B的账户余额增加这张电影票价;
3.记录一条交易日志。

如果此时有其他用户也在买票,那么2最易引起冲突。因为它们要更新同一个影院账户的余额,需要修改同一行数据。

根据两阶段锁协议,不论你怎样安排语句顺序,所有的操作需要的行锁都是在事务提交的时候才释放的。所以,如果你把语句2安排在最后,比如按照3、1、2这样的顺序,那么影院账户余额这一行的锁时间就最少。这就最大程度地减少了事务之间的锁等待,提升了并发度。

死锁和死锁检测

当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。

MySQL全局锁、表锁、行锁、间隙锁_第2张图片事务A在等待事务B释放id=2的行锁,而事务B在等待事务A释放id=1的行锁。 事务A和事务B在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有两种策略:

一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数innodb_lock_wait_timeout来设置。
另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数innodb_deadlock_detect设置为on,表示开启这个逻辑。

innodb_lock_wait_timeout的默认值是50s,太大业务无法接收,改小,容易引起误杀。

正常情况下我们还是要采用第二种策略,即:主动死锁检测,而且innodb_deadlock_detect的默认值本身就是on。每当一个事务被锁的时候,就要看看它所依赖的线程有没有被别人锁住,如此循环,最后判断是否出现了循环等待。这是一个时间复杂度是O(n)的操作。假设有1000个并发线程要同时更新同一行,那么死锁检测操作就是100万这个量级的。死锁检测要耗费大量的CPU资源。

解决思路:控制并发度

这个并发控制要做在数据库服务端。如果你有中间件,可以考虑在中间件实现;如果你的团队有能修改MySQL源码的人,也可以做在MySQL里面。基本思路就是,对于相同行的更新,在进入引擎之前排队。这样在InnoDB内部就不会有大量的死锁检测工作了。

4.间隙锁

即使把所有的记录都加上锁,还是阻止不了新插入的记录,这也是为什么“幻读”会被单独拿出来解决的原因。

行锁只能锁住行,但是新插入记录这个动作,要更新的是记录之间的“间隙”。因此,为了解决幻读问题,InnoDB只好引入新的锁,也就是间隙锁(Gap Lock)。

间隙锁,锁的就是两个值之间的空隙。假设表t,初始化插入了6个记录,这就产生了7个间隙。

MySQL全局锁、表锁、行锁、间隙锁_第3张图片
这样,当你执行 select * from t where d=5 for update的时候,就不止是给数据库中已有的6个记录加上了行锁,还同时加了7个间隙锁。这样就确保了无法再插入新的记录。

也就是说这时候,在一行行扫描的过程中,不仅将给行加上了行锁,还给行两边的空隙,也加上了间隙锁。

比如行锁,分成读锁和写锁。读锁跟读锁不冲突,读锁跟写锁冲突,写锁跟读锁冲突,写锁跟写锁冲突。

但是间隙锁不一样,跟间隙锁存在冲突关系的,是“往这个间隙中插入一个记录”这个操作。间隙锁之间都不存在冲突关系。

间隙锁和行锁合称next-key lock,每个next-key lock是前开后闭区间。也就是说,我们的表t初始化以后,如果用select * from t for update要把整个表所有记录锁起来,就形成了7个next-key lock,分别是 (-∞,0]、(0,5]、(5,10]、(10,15]、(15,20]、(20, 25]、(25, +suprenum]。

间隙锁和next-key lock的引入,帮我们解决了幻读的问题,但同时也带来了一些“困扰”。

间隙锁是在可重复读隔离级别下才会生效的。所以,你如果把隔离级别设置为读提交的话,就没有间隙锁了。但同时,你要解决可能出现的数据和日志不一致问题,需要把binlog格式设置为row。

如果读提交隔离级别够用,也就是说,业务不需要可重复读的保证,这样考虑到读提交下操作数据的锁范围更小(没有间隙锁),这个选择是合理的。但其实我想说的是,配置是否合理,跟业务场景有关,需要具体问题具体分析。

你可能感兴趣的:(Mysql,行锁,表锁,全局锁,间隙锁)