智能算法集成测试平台V0.1实战开发

文章目录

  • 前言
  • 版权
  • 2022.7.4
  • 集成算法
    • 项目结构
    • 基本粒子群算法SPSO
      • 数据结构
      • 相关配置
      • 实现代码
      • 目标函数
    • 参数优化(单种群)PSO系列算法
      • LPSO
      • DPSO
      • NPSO
    • 自适应PSO(VCAPSO)
      • 参数配置
      • 核心代码
    • 综合粒子群算法(CLPSO)
    • 多种群算法
      • MPSO 算法
      • HPSO算法
  • 后续工作

前言

兜兜转转了一圈,想要和其他的粒子群算法做个对比测试,结果发现,那帮西崽木得代码,python没有也就算了,俩matlab都找不到,找到了还要钱,好家伙,看不起谁丫?!虽然有一些python的智能算法库,但是要么就是集成的太多,没有专门正对PSO的一些变体进行集成,虽然有一个专门搞PSO的库,但是,那玩意就集成了一个算法,核心文件就一个PSO。

所以,既然没有,那么我就自己造个轮子先看看,而且我觉得,如果论文没给代码的,我觉得这种论文要么就是有鬼,要么就是S13写的,少看,那些期刊的评审真的也需要擦亮眼睛看看,连代码连接都不敢给的论文,有啥好评审的。

目前先搞一个最简单的版本,不过目前是只有集成到PSO的,而且目前是针对单目标平台的,多目标的话有PlatEMO,所以基本上不太需要我再写一个,只是单目标的话我是没找到合适的,那些论文的作者也没给代码,网上资源也少,不知道是太简单了还是怕露馅了,毫无开源精神。

版权

郑重提示:本文版权归本人所有,任何人不得抄袭,搬运,使用需征得本人同意!

2022.7.4

日期:2022.7.4

集成算法

目前的话,这个玩意是集成了PSO的算法,其中PSO的算法分为两大类,一个是基于参数优化的算法,另一个是多种群策略,本来我还想搞几个优化拓扑结构的来的,但是一方面是实现的问题,另一方面是论文没说明白(中文的)英文的要时间,我没那么多时间搞这个破玩意,因为自己的算法还没做完,我只是想要一个对比测试的东东。

项目结构

智能算法集成测试平台V0.1实战开发_第1张图片

基本粒子群算法SPSO

智能算法集成测试平台V0.1实战开发_第2张图片

数据结构

为了后面统一方便管理,也是专门定义了一个数据类。
智能算法集成测试平台V0.1实战开发_第3张图片

import random
from ALGSet.Config.PSO.SPSO import *
class SBird(object):

    #这个是从1开始的
    ID = 1

    Y = None
    X = None
    V = None

    PbestY = None
    PBestX = None

    GBestX = None
    GBestY = None


    def __init__(self,ID):
        self.ID = ID
        self.V = [random.random() *(V_max-V_min) + V_min for _ in range(DIM)]
        self.X = [random.random() *(X_up-X_down) + X_down for _ in range(DIM)]

    def __str__(self):
        return "ID:"+str(self.ID)+" -Fintess:%.2e:"%(self.Y)+" -X"+str(self.X)+" -PBestFitness:%.2e"%(self.PbestY)+" -PBestX:"+str(self.PBestX)+\
            "\n -GBestFitness:%.2e"%(self.GBestY)+" -GBestX:"+str(self.GBestX)

相关配置

配置也是和算法的名称对应的,在上面的图也能够看出来。

#coding=utf-8
# 相关参数的设置通过配置中心完成
import sys
import os
sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
C1=1.458
C2=1.458
W = 0.72
m = 3
DIM = 10
PopulationSize=30
#运行1000次(可以理解为训练1次这个粒子群要跑一千次)
IterationsNumber = 3000
X_down = -10.0
X_up = 10

V_min = -5.0
V_max = 5

Wmax = 0.9
Wmin = 0.4
def LinearW(iterate):
    #传入迭代次数

    w = Wmax-(iterate*((Wmax-Wmin)/IterationsNumber))
    return w


def Dw(iterate):
    w = Wmax-((iterate**2)*((Wmax-Wmin)/(IterationsNumber**2)))
    return w
def Nw(iterate):
    w = Wmin+(Wmax-Wmin)*(((IterationsNumber-iterate)**m)/(IterationsNumber**m))
    return w

实现代码

#coding=utf-8
#这个是最基础的PSO算法SPSO算法

import sys
import os

from ALGSet.Alg.PSO.Bird.SBird import SBird

sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
from ALGSet.Target.Target import Target
from ALGSet.Config.PSO.SPSO import *
import random
import time
class SPso(object):

    Population = None
    Random = random.random
    target = Target()
    W = W


    def __init__(self):
        #为了方便,我们这边直接先从1开始
        self.Population = [SBird(ID) for ID in range(1,PopulationSize+1)]

    def ComputeV(self,bird):
        #这个方法是用来计算速度滴
        NewV=[]
        for i in range(DIM):
            v = bird.V[i]*self.W + C1*self.Random()*(bird.PBestX[i]-bird.X[i])\
            +C2*self.Random()*(bird.GBestX[i]-bird.X[i])
            #这里注意判断是否超出了范围
            if(v>V_max):
                v = V_max
            elif(v<V_min):
                v = V_min
            NewV.append(v)

        return NewV

    def ComputeX(self,bird:SBird):
        NewX = []
        NewV = self.ComputeV(bird)
        bird.V = NewV
        for i in range(DIM):
            x = bird.X[i]+NewV[i]
            if(x>X_up):
                x = X_up
            elif(x<X_down):
                x = X_down
            NewX.append(x)
        return NewX

    def InitPopulation(self):
        #初始化种群
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")
        for bird in self.Population:
            bird.PBestX = bird.X
            bird.Y = self.target.SquareSum(bird.X)
            bird.PbestY = bird.Y
            if(bird.Y<=Flag):
                GBestX = bird.X
                Flag = bird.Y
        #便利了一遍我们得到了全局最优的种群
        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY = Flag


    def Running(self):
        #这里开始进入迭代运算
        for iterate in range(1,IterationsNumber+1):
            #这个算的GBestX其实始终是在算下一轮的最好的玩意
            GBestX = [0. for _ in range(DIM)]
            Flag = float("inf")

            for bird in self.Population:
   
                x = self.ComputeX(bird)
                y = self.target.SquareSum(x)

                bird.X = x
                bird.Y = y
                if(bird.Y<=bird.PbestY):
                    bird.PBestX=bird.X
                    bird.PbestY = bird.Y

                #个体中的最优一定包含了全局经历过的最优值
                if(bird.PbestY<=Flag):
                    GBestX = bird.PBestX
                    Flag = bird.PbestY
            for bird in self.Population:
                bird.GBestX = GBestX
                bird.GBestY=Flag

if __name__ == '__main__':

    start = time.time()
    sPSO = SPso()
    sPSO.InitPopulation()
    sPSO.Running()
    end = time.time()

    print("Y: ",sPSO.Population[0].GBestY)
    print("X: ",sPSO.Population[0].GBestX)
    print("花费时长:",end-start)




目标函数

目标函数的话其实都在Target里面
目前的话其实还是在做算法的集成,里面的很多东西其实压根没怎么架构,不过这个后面改起来很快。现在先把一些算法塞进去。
智能算法集成测试平台V0.1实战开发_第4张图片

import math
import sys
import os
sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
class Target(object):
    def SquareSum(self,X):
        res = 0
        for x in X:

            res+=x*x

        return res


参数优化(单种群)PSO系列算法

我们在这边其实是集成了三个

LPSO

这个其实就是线性变化权重。

"""
LPSO:这个玩意其实还只是对W进行优化了
"""
import time

from ALGSet.Alg.PSO.SPSO import SPso
from ALGSet.Config.PSO.SPSO import *
class LPso(SPso):

    def Running(self):
        # 这里开始进入迭代运算
        for iterate in range(1, IterationsNumber + 1):
            # 这个算的GBestX其实始终是在算下一轮的最好的玩意
            GBestX = [0. for _ in range(DIM)]
            Flag = float("inf")
            w = LinearW(iterate)
            self.W = w
            for bird in self.Population:

                x = self.ComputeX(bird)
                y = self.target.SquareSum(x)

                bird.X = x
                bird.Y = y
                if (bird.Y <= bird.PbestY):
                    bird.PBestX = bird.X
                    bird.PbestY = bird.Y

                # 个体中的最优一定包含了全局经历过的最优值
                if (bird.PbestY <= Flag):
                    GBestX = bird.PBestX
                    Flag = bird.PbestY
            for bird in self.Population:
                bird.GBestX = GBestX
                bird.GBestY = Flag
                
if __name__ == '__main__':
    start = time.time()
    lPSO = LPso()
    lPSO.InitPopulation()
    lPSO.Running()
    end = time.time()

    print("Y: ",lPSO.Population[0].GBestY)
    print("X: ",lPSO.Population[0].GBestX)
    print("花费时长:",end-start)


DPSO

这个其实就是把线性权重变成了这个玩意


def Dw(iterate):
    w = Wmax-((iterate**2)*((Wmax-Wmin)/(IterationsNumber**2)))
    return w

代码其实就是把刚刚的WLinear变成了Dw

NPSO

同理,w函数变成这个了。

def Nw(iterate):
    w = Wmin+(Wmax-Wmin)*(((IterationsNumber-iterate)**m)/(IterationsNumber**m))
    return w

自适应PSO(VCAPSO)

这个算法的实现相对复杂一点,其实也不难。
具体资料的话自己感兴趣可以去查查,我这里还没整理好,就不发了。

参数配置

这个的话也是在Config那个包下面的

#coding=utf-8
# 相关参数的设置通过配置中心完成
import sys
import os
sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
C1=1.458
C2=1.458

K1 = 0.72
K2 = 0.9

DIM = 10
PopulationSize=30

IterationsNumber = 3000
X_down = -10.0
X_up = 10

V_min = -5.0
V_max = 5

Wmax = 0.9
Wmin = 0.4

核心代码

"""
这个算法其实也是关于参数进行了优化的
基于云自适应算法进行适应的(什么叫做云我也不懂,不过公式给我就好了)
"""
import math
import time
import random

from ALGSet.Alg.PSO.SPSO import SPso

from ALGSet.Config.PSO.VCAPSO import *


class VCAPso(SPso):

    F_avg = 0.
    F_avg1=0.
    F_avg2=0.
    En = 0.
    He = 0.

    def InitPopulation(self):
        #初始化种群
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")
        for bird in self.Population:
            bird.PBestX = bird.X
            bird.Y = self.target.SquareSum(bird.X)
            bird.PbestY = bird.Y
            self.F_avg+=bird.Y
            if(bird.Y<=Flag):
                GBestX = bird.X
                Flag = bird.Y
        #便利了一遍我们得到了全局最优的种群
        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY = Flag
        self.F_avg/=PopulationSize
        self.En = (self.F_avg-Flag)/C1
        self.He = self.En/C2
        self.En = random.uniform(self.En,self.He)
        self.F_avg1,self.F_avg2 = self.__GetAvg2(self.Population)

    def ComputeV(self,bird):
        #这个方法是用来计算速度滴
        NewV=[]

        if(bird.Y<=self.F_avg1):
            w = K1
        elif(bird.Y>=self.F_avg2):
            w = K2
        else:
            w = Wmax-Wmin*(math.exp(-((bird.Y-self.En)**2)/(2*(self.En**2))))


        for i in range(DIM):
            v = bird.V[i]*w + C1*self.Random()*(bird.PBestX[i]-bird.X[i])\
            +C2*self.Random()*(bird.GBestX[i]-bird.X[i])
            #这里注意判断是否超出了范围
            if(v>V_max):
                v = V_max
            elif(v<V_min):
                v = V_min
            NewV.append(v)

        return NewV

    def __GetAvg2(self,Population):
        F_avg1 = 0.
        F_avg2 = 0.
        F_avg1_index = 0
        F_avg2_index = 0
        for bird in Population:
            if(bird.Y<self.F_avg):
                F_avg1_index+=1
                F_avg1+=bird.Y
            elif(bird.Y>self.F_avg):
                F_avg2_index+=1
                F_avg2+=bird.Y

        if (not F_avg1_index == 0):
            F_avg1 /= F_avg1_index
        else:
            F_avg1 = float("inf")
        if (not F_avg2_index == 0):
            F_avg2 /= F_avg2_index
        else:
            F_avg2 = float("inf")

        return F_avg1,F_avg2


    def Running(self):
        # 这里开始进入迭代运算
        for iterate in range(1, IterationsNumber + 1):
            # 这个算的GBestX其实始终是在算下一轮的最好的玩意
            GBestX = [0. for _ in range(DIM)]
            Flag = float("inf")
            F_avg = 0.
            for bird in self.Population:

                x = self.ComputeX(bird)
                y = self.target.SquareSum(x)

                bird.X = x
                bird.Y = y

                F_avg += bird.Y

                if (bird.Y <= bird.PbestY):
                    bird.PBestX = bird.X
                    bird.PbestY = bird.Y

                # 个体中的最优一定包含了全局经历过的最优值
                if (bird.PbestY <= Flag):
                    GBestX = bird.PBestX
                    Flag = bird.PbestY

            for bird in self.Population:
                bird.GBestX = GBestX
                bird.GBestY = Flag

            self.F_avg = F_avg
            self.F_avg /= PopulationSize
            self.En = (self.F_avg - Flag) / C1
            self.He = self.En / C2
            self.En = random.uniform(self.En, self.He)
            self.F_avg1, self.F_avg2 = self.__GetAvg2(self.Population)

if __name__ == '__main__':
    start = time.time()
    vcaPso = VCAPso()
    vcaPso.InitPopulation()
    vcaPso.Running()
    end = time.time()

    print("Y: ", vcaPso.Population[0].GBestY)
    print("X: ", vcaPso.Population[0].GBestX)
    print("花费时长:", end - start)


综合粒子群算法(CLPSO)

这个算法是在原来那篇论文里面提到的,先去复现的时候也是复现了的其实,现在只是单独提取出来罢了。
值得一提的是,这个玩意其实设计出来主要是应对多峰函数的,收敛也较慢。

import math
import time

from ALGSet.Target.Target import Target
from ALGSet.Config.PSO.CLPSO import *
from ALGSet.Alg.PSO.Bird.CLBird import CLBird
import random
class CLPso(object):
    
    Population = None
    Random = random.random
    target = Target()
    W = 0.
    Math = math

    def __init__(self):
        #为了方便,我们这边直接先从1开始
        self.Population = [CLBird(ID) for ID in range(1,PopulationSize+1)]
        
    def __PCi(self,i,ps):
        """
        论文当中的PCi的算子
        :return:
        """
        pci = 0.05+0.45*((self.Math.exp(10*(i-1)/(ps-1)))/(self.Math.exp(10)-1))
        return pci

    def NewComputeV(self, bird):
        """

        :param bird:
        :param params: 传入的数据格式为:[[w,c1,c2,c3],[],[],[],[]] 这里一共是5组共设置100个粒子
        :return:
        这里按照ID的顺序来调用不同的参数
        """
        NewV = []

        for i in range(DIM):
            v = bird.V[i] * self.W
            if (self.Random() < self.__PCi((i + 1), PopulationSize)):
                pbestfi = bird.Follow.PBestX[i]
            else:
                pbestfi = bird.PBestX[i]
            v = v + C1 * self.Random() * (pbestfi - bird.X[i])
            if (v > V_max):
                v = V_max
            elif (v < V_min):
                v = V_min
            NewV.append(v)

        return NewV

    def NewComputeX(self, bird: CLBird):
        NewX = []
        NewV = self.NewComputeV(bird)
        bird.V = NewV
        for i in range(DIM):
            x = bird.X[i] + NewV[i]
            if (x > X_up):
                x = X_up
            elif (x < X_down):
                x = X_down
            NewX.append(x)
        return NewX
    
    def InitPopulation(self):
        #初始化种群,不过是给ENV调用的,因为这个里面有一个CLPSO的思想
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")
        for bird in self.Population:
            bird.PBestX = bird.X
            bird.Y = self.target.SquareSum(bird.X)
            bird.PbestY = bird.Y
            if(bird.Y<=Flag):
                GBestX = bird.X
                Flag = bird.Y

        #便利了一遍我们得到了全局最优的种群
        self.GBestY = Flag
        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY = Flag
            #现在是初始化,所以这个这样算是没问题的
            self.GBestYLast = Flag
            #给每一个粒子找到一个追随者
            self.ChangeBird(bird,self.Population)


    def ChangeBird(self,bird,Population):
        #这个主要是实现锦标赛法来对粒子的跟踪对象进行更新

        while True:
            #被跟踪的粒子不能和自己一样,也不能和上一个一样
            a,b = random.sample(range(PopulationSize),2)
            a = Population[a];b=Population[b]
            follow = a
            if(a.PbestY>b.PbestY):
                follow = b
            if(follow.ID!=bird.ID):
                if(bird.Follow):
                    if(bird.Follow.ID !=follow.ID):
                        bird.Follow = follow
                        return
                else:
                    bird.Follow = follow
                    return
                
    def Running(self):
       
        for iterate in range(1,IterationsNumber+1):
          
            #这个算的GBestX其实始终是在算下一轮的最好的玩意
            GBestX = [0. for _ in range(DIM)]
            Flag = float("inf")
            self.W = LinearW(iterate)
            for bird in self.Population:

                x = self.NewComputeX(bird)
                y = self.target.SquareSum(x)
        
                bird.X = x
                bird.Y = y
                if(bird.Y<=bird.PbestY):
                    bird.PBestX=bird.X
                    bird.PbestY = bird.Y
                elif (bird.Y == bird.PbestY):
                    bird.NoChange += 1
                    if (bird.NoChange == M_follow):
                        self.ChangeBird(bird, self.Population)
                        bird.NoChange = 0

                #个体中的最优一定包含了全局经历过的最优值
                if(bird.PbestY<=Flag):
                    GBestX = bird.PBestX
                    Flag = bird.PbestY
            for bird in self.Population:
                bird.GBestX = GBestX
                bird.GBestY=Flag
                
if __name__ == '__main__':

    start = time.time()
    clPSO = CLPso()
    clPSO.InitPopulation()
    clPSO.Running()
    end = time.time()

    print("Y: ",clPSO.Population[0].GBestY)
    print("X: ",clPSO.Population[0].GBestX)
    print("花费时长:",end-start)

多种群算法

MPSO 算法

这个算法就是分三个种群,然后,一个执行LPSO,一个执行SPSO,还一个执行VCAPSO。

这个就是集成三个算法,然后改了一些速度方程。

      v = bird.V[i] * w + C1 * self.Random() * (bird.PBestX[i] - bird.X[i]) \
                + C2*self.Random()*(bird.CBestX[i]-bird.X[i])\
                +C3*self.Random()*(self.GBestX[i]-bird.X[i])

HPSO算法

这个就是混合多种群PSO。也是代码很简单,而且是目前测试效果最好的。

import random
import time

from ALGSet.Alg.PSO.Bird.Hbird import HBird
from ALGSet.Config.PSO.HPSO import *
from ALGSet.Target.Target import Target


class HPso():

    rand = random.random
    miu = miu
    target = Target()
    def __init__(self):
        self.Population = [HBird(ID) for ID in range(1,PopulationSize+1)]
        self.Divide()

    def Divide(self):
        #我们这边直接通过ID进行分类
        CID = 0
        for bird in self.Population:
            bird.CID=CID
            if(bird.ID % ClusterSize==0):
                if(CID<=ClusterNumber):
                    CID+=1

    def ComputeV(self,bird):
        #这个方法是用来计算速度滴
        NewV=[]

        for i in range(DIM):
    

            v1 = bird.V[i] * self.W + C1 * self.rand() * (bird.PBestX[i] - bird.X[i]) \
                + C2 * self.rand() * (bird.GBestX[i] - bird.X[i])
            v2 = bird.V[i] * self.W + C1 * self.rand() * (bird.PBestX[i] - bird.X[i]) \
                + C2 * self.rand() * (bird.CBestX[i] - bird.X[i])
            v = v1*self.miu+(1-self.miu)*v2

            if(v>V_max):
                v = V_max
            elif(v<V_min):
                v = V_min
            NewV.append(v)
        return NewV

    def ComputeX(self,bird):
        NewX = []
        NewV = self.ComputeV(bird)
        bird.V = NewV
        for i in range(DIM):
            x = bird.X[i]+NewV[i]

            if (x > X_up):
                x = X_up
            elif (x < X_down):
                x = X_down
            NewX.append(x)
        return NewX


    def InitPopulation(self):
        #初始化种群
        #这个是记录全局最优解的
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")

        #还有一个是记录Cluster最优解的
        CBest = {}
        CFlag = {}
        for i in range(ClusterNumber):
            CFlag[i]=float("inf")


        for bird in self.Population:
            bird.PBestX = bird.X
            bird.Y = self.target.SquareSum(bird.X)
            bird.PbestY = bird.Y

            bird.CBestX = bird.X
            bird.CBestY = bird.Y

            if(bird.Y<=Flag):
                GBestX = bird.X
                Flag = bird.Y

            if(bird.Y<=CFlag.get(bird.CID)):
                CBest[bird.CID]=bird.X
                CFlag[bird.CID] = bird.Y

        #便利了一遍我们得到了全局最优的种群
        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY = Flag
            bird.CBestY=CFlag.get(bird.CID)
            bird.CBestX=CBest.get(bird.CID)



    def Running(self):
        #这里开始进入迭代运算
        for iterate in range(1,IterationsNumber+1):
            w = LinearW(iterate)
            #这个算的GBestX其实始终是在算下一轮的最好的玩意
            GBestX = [0. for _ in range(DIM)]
            Flag = float("inf")
            CBest = {}
            CFlag = {}
            for i in range(ClusterNumber):
                CFlag[i] = float("inf")

            for bird in self.Population:
                #更改为线性权重
                self.W = w
                x = self.ComputeX(bird)
                y = self.target.SquareSum(x)
                bird.X = x
                bird.Y = y
                if(bird.Y<=bird.PbestY):
                    bird.PBestX=bird.X
                    bird.PbestY = bird.Y

                #个体中的最优一定包含了全局经历过的最优值
                if(bird.PbestY<=Flag):
                    GBestX = bird.PBestX
                    Flag = bird.PbestY

                if (bird.Y <= CFlag.get(bird.CID)):
                    CBest[bird.CID] = bird.X
                    CFlag[bird.CID] = bird.Y

            for bird in self.Population:
                bird.GBestX = GBestX
                bird.GBestY=Flag
                bird.CBestY = CFlag.get(bird.CID)
                bird.CBestX = CBest.get(bird.CID)


if __name__ == '__main__':
    start = time.time()
    hPso = HPso()
    hPso.InitPopulation()
    hPso.Running()
    end = time.time()

    print("Y: ", hPso.Population[0].GBestY)
    print("X: ", hPso.Population[0].GBestX)
    print("花费时长:", end - start)





后续工作

搞可视化测试,后面,不过,这个要后面在做,代码后面上传。

你可能感兴趣的:(人工智能,集成测试,python,人工智能)