openCV第二篇

文章目录

1. HSV

2. 图像阈值

3. 图像平滑

4. 形态学-腐蚀操作

5. 形态学-膨胀操作

6. 开运算与闭运算

7. 梯度运算

8. 礼帽与黑帽

9. 图像梯度-Sobel算子

10. 图像梯度-Scharr算子和laplacian算子

10. 知识点总结*

1. HSV

由我们上一章所学,导入图片将其转化为灰度图并定义显示图片函数cv_show()。 

import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB
%matplotlib inline 

def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey(0)
    cv2.destroyAllWindows() 

img = cv2.imread('./data/gd01.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# img_gray.shape 为 (300,400)
cv_show('win1',img_gray)

openCV第二篇_第1张图片

HSV:

  • H - 色调(主波长)。
  • S - 饱和度(纯度/颜色的阴影)。
  • V值(强度)
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) # 转换成RGB
cv_show('win',hsv)

openCV第二篇_第2张图片

2. 图像阈值

上章所学我们得知,矩阵中unit8值(0-255)越大表示越亮,我们可以设定一个阈值thresh,比它大的做什么什么操作,比它小的做什么什么操作。 

  • ret, dst = cv2.threshold(src, thresh, maxval, type)
    • src: 输入图,只能输入单通道图像,通常来说为灰度图
    • dst: 输出图

    • thresh: 阈值(0-255我们一般取127。)

    • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值。

    • type:二值化操作的类型,包含以下5种类型:

      • cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0。

      • cv2.THRESH_BINARY_INV , THRESH_BINARY的反转。

      • cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变。

      • cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0。

      • cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转。

ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)
# ps: ret为127 thresh1-5为图片矩阵
titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

openCV第二篇_第3张图片

可以看到,与原始图片对比,(阈值127)情况下BINARY在亮的地方更亮了(变为255),暗的地方更暗了(变为了0)。BINART_INV与其相反。后三种方法同理如上面所解释。

3. 图像平滑

对图像数据进行滤波操作。

在这之前我们先来学习一下如何给图片加入噪声,变成以下这种。

openCV第二篇_第4张图片

 可以看到其实就是在这个矩阵随机位置的像素点变成了白色,255。

img = cv2.imread('./data/gd07.jpg')

#获取图片行、列、通道数
rows,cols,channels = img.shape

for i in range(0,5000):
    #根据在0和行-1之间获取随机整数
    x = np.random.randint(0,rows-1)
    #根据在0和列-1之间获取随机整数
    y = np.random.randint(0,cols-1)

    #将通道颜色改为255, (255,255,255)
    img[x,y][0] = 255
    img[x,y][1] = 255
    img[x,y][2] = 255

cv_show('win',img)

那么现在我们有了这种图像,该学习如何去掉噪音点了~

  • blur = cv2.blur(img, (3, 3))
    • 均值滤波
  • box = cv2.boxFilter(img,-1,(3,3), normalize=True)  
    • 方框滤波
  • box = cv2.boxFilter(img,-1,(3,3), normalize=False) 
    • 方框滤波
  • aussian = cv2.GaussianBlur(img, (5, 5), 1)  
    • 高斯滤波
  • median = cv2.medianBlur(img, 5)
    • 中值滤波

均值滤波--简单的平均卷积操作(卷积核大小3*3内部值都是1,下方参数是3*3矩阵均值)

blur = cv2.blur(img, (3, 3))
cv_show('win',blur)

openCV第二篇_第5张图片

方框滤波--基本和均值一样,可以选择归一化(-1表示颜色通道一致,3*3同上,normalize=True做归一化,此时与上方均值滤波是一样的。)

box = cv2.boxFilter(img,-1,(3,3), normalize=True)  
cv_show('win',box)

openCV第二篇_第6张图片

方框滤波--基本和均值一样,可以选择归一化,容易越界。(不再均值除以9,和大于255按255赋值。)

box = cv2.boxFilter(img,-1,(3,3), normalize=False)  
cv_show('win',box)

openCV第二篇_第7张图片

高斯滤波--高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的。(此时卷积核不再全是1,而是离的近的相对较大,离得远的相对较小。)

aussian = cv2.GaussianBlur(img, (5, 5), 1)  
cv_show('win',aussian)

openCV第二篇_第8张图片

中值滤波--相当于用中值代替(5*5的矩阵25个数,中间值为处理结果。)

median = cv2.medianBlur(img, 5)  # 中值滤波
cv_show('win',median)

openCV第二篇_第9张图片

均值、高斯、中值滤波对比:

res = np.hstack((blur,aussian,median))
#print (res)
cv_show('median vs average', res)

openCV第二篇_第10张图片

 

4. 形态学-腐蚀操作

所谓腐蚀操作,就是一点点侵蚀图片中的内容,如我刚刚挥笔写下的“帅”字,它长了很多“毛”,我们要把他侵蚀掉:

openCV第二篇_第11张图片

img = cv2.imread('./data/s.jpg', cv2.IMREAD_GRAYSCALE)
kernel = np.ones((3,3),np.uint8) 
erosion = cv2.erode(img,kernel,iterations = 1)
cv_show('win',erosion)
  • erosion = cv2.erode(img,kernel,iterations = 1) 
    • kernel 卷积核
    • iterations 迭代次数 

这不比之前更帅了(被腐蚀得线条也变瘦了)

openCV第二篇_第12张图片

关于卷积核选取和迭代次数:

上面选用3*3,以帅字为例,当3*3区域出现不同值(如这里0和255),那么就把这个点腐蚀掉。

卷积核如果选择太大,可能会直接被侵蚀没掉。  

pie = cv2.imread('./data/pie.png')
kernel = np.ones((30,30),np.uint8) 
erosion_1 = cv2.erode(pie,kernel,iterations = 1)
erosion_2 = cv2.erode(pie,kernel,iterations = 3)
erosion_3 = cv2.erode(pie,kernel,iterations = 5)
res = np.hstack((erosion_1,erosion_2,erosion_3))
cv_show('win',res)

openCV第二篇_第13张图片

5. 形态学-膨胀操作

我们上面不仅把“帅”边上长的“毛”去掉了,由于我们选择3*3卷积核,还顺便让它变瘦了,我们就以它变瘦之后的图片为例,再让它胖起来。

img = cv2.imread('./data/s.jpg',cv2.IMREAD_GRAYSCALE)
kernel = np.ones((3,3),np.uint8) 
shuai = cv2.erode(img,kernel,iterations = 1)
kernel = np.ones((3,3),np.uint8) 
shuai_PLUS = cv2.dilate(shuai,kernel,iterations = 1)
cv_show('win',shuai_PLUS )
  • shuai_PLUS = cv2.dilate(shuai,kernel,iterations = 1)

openCV第二篇_第14张图片

同理

pie = cv2.imread('./data/pie.png')

kernel = np.ones((30,30),np.uint8) 
dilate_1 = cv2.dilate(pie,kernel,iterations = 1)
dilate_2 = cv2.dilate(pie,kernel,iterations = 2)
dilate_3 = cv2.dilate(pie,kernel,iterations = 3)
res = np.hstack((dilate_1,dilate_2,dilate_3))
cv_show('win',res)

openCV第二篇_第15张图片

6. 开运算与闭运算

开:先腐蚀,再膨胀

img = cv2.imread('./data/s.jpg',cv2.IMREAD_GRAYSCALE)

kernel = np.ones((5,5),np.uint8) 
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

cv_show('win',opening)
  • opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

openCV第二篇_第16张图片

闭:先膨胀,再腐蚀

img = cv2.imread('./data/s.jpg',cv2.IMREAD_GRAYSCALE)

kernel = np.ones((5,5),np.uint8) 
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

cv_show('win',closing)
  • closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

openCV第二篇_第17张图片

7. 梯度运算

梯度=膨胀-腐蚀

pie = cv2.imread('./data/pie.png',cv2.IMREAD_GRAYSCALE)
kernel = np.ones((7,7),np.uint8) 
dilate = cv2.dilate(pie,kernel,iterations = 5)
erosion = cv2.erode(pie,kernel,iterations = 5)

res = np.hstack((dilate,erosion))

cv_show('win',res)

以下是经过5次腐蚀和5次膨胀后的图像: 

openCV第二篇_第18张图片

获得边界信息:梯度运算 

gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel)

cv_show('win',gradient)
  • gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel)

openCV第二篇_第19张图片

8. 礼帽与黑帽

  • 礼帽 = 原始输入-开运算结果
  • 黑帽 = 闭运算-原始输入
# 礼帽
img = cv2.imread('./data/s.jpg',cv2.IMREAD_GRAYSCALE)
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
cv_show('win',tophat)

(只剩下“毛”了 ) 

openCV第二篇_第20张图片

# 黑帽
img = cv2.imread('./data/s.jpg',cv2.IMREAD_GRAYSCALE)
blackhat  = cv2.morphologyEx(img,cv2.MORPH_BLACKHAT, kernel)
cv_show('win',blackhat)

(只剩下小轮廓了) 

openCV第二篇_第21张图片

9. 图像梯度-Sobel算子

我们依旧引入图像pie

img = cv2.imread('./data/pie.png',cv2.IMREAD_GRAYSCALE)
cv_show('win',img)

openCV第二篇_第22张图片

 可见在边缘部分(黑白交界),梯度比较大。

openCV第二篇_第23张图片

定义Gx,Gy处理水平和竖直方向上的梯度。

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)

cv_show('sobelx',sobelx)
  • dst = cv2.Sobel(src, ddepth, dx, dy, ksize)
    • ddepth:图像的深度(一般-1)
    • dx和dy分别表示水平和竖直方向
    • ksize是Sobel算子的大小
    • cv2.CV_64F处理差为负数情况。

openCV第二篇_第24张图片

为什么只有一半呢?

我们定义的矩阵计算时是右-左,白-黑>0正常显示,黑-白<0进行了截断为0, 

白到黑是正数,黑到白就是负数了,所有的负数会被截断成0,所以要取绝对值

我们需要对其进行一下转换:

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
cv_show('sobelx',sobelx)
  • sobelx = cv2.convertScaleAbs(sobelx)

openCV第二篇_第25张图片

 上面是水平方向,下面是竖直方向:

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)  
cv_show('sobelx',sobely)

openCV第二篇_第26张图片

分别计算x和y,再求和:

sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)
cv_show('sobelxy',sobelxy)

openCV第二篇_第27张图片

但不建议都是设置成1,效果可能不好。

sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 
cv_show('sobelxy',sobelxy)

openCV第二篇_第28张图片

建议:分别算Gx,Gy自己进行求和操作:

img = cv2.imread('./data/gd01.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)

sobelxy2=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy2 = cv2.convertScaleAbs(sobelxy2)
res = np.hstack((sobelxy,sobelxy2))
cv_show('res',res)

openCV第二篇_第29张图片

10. 图像梯度-Scharr算子和laplacian算子

Scharr算子

openCV第二篇_第30张图片

laplacian算子 

openCV第二篇_第31张图片

核中数值有差异,Scharr敏感些。

laplacian算子涉及二阶导,更加敏感同时对噪声也更加敏感,一般和其他方法配合使用。

原理同上,我们来对比一下这三种算子效果:

img = cv2.imread('./data/gd01.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)   
sobely = cv2.convertScaleAbs(sobely)  
sobelxy =  cv2.addWeighted(sobelx,0.5,sobely,0.5,0)  

scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)
scharry = cv2.Scharr(img,cv2.CV_64F,0,1)
scharrx = cv2.convertScaleAbs(scharrx)   
scharry = cv2.convertScaleAbs(scharry)  
scharrxy =  cv2.addWeighted(scharrx,0.5,scharry,0.5,0) 

laplacian = cv2.Laplacian(img,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)   

res = np.hstack((sobelxy,scharrxy,laplacian))
cv_show('res',res)
  • scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)
  • laplacian = cv2.Laplacian(img,cv2.CV_64F) 

openCV第二篇_第32张图片

10. 知识点总结*

  • 图像阈值:
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)
# ps: ret为127 thresh1-5为图片矩阵
titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
 
for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()
  • 图像平滑
# 加入噪声
img = cv2.imread('./data/gd07.jpg')
 
#获取图片行、列、通道数
rows,cols,channels = img.shape
 
for i in range(0,5000):
    #根据在0和行-1之间获取随机整数
    x = np.random.randint(0,rows-1)
    #根据在0和列-1之间获取随机整数
    y = np.random.randint(0,cols-1)
 
    #将通道颜色改为255, (255,255,255)
    img[x,y][0] = 255
    img[x,y][1] = 255
    img[x,y][2] = 255
 
cv_show('win',img)
blur = cv2.blur(img, (3, 3))
box = cv2.boxFilter(img,-1,(3,3), normalize=True)  
aussian = cv2.GaussianBlur(img, (5, 5), 1)  
median = cv2.medianBlur(img, 5) 

res = np.hstack((blur,aussian,median))
cv_show('median vs average', res)
  • 形态学-腐蚀
img = cv2.imread('./data/s.jpg', cv2.IMREAD_GRAYSCALE)
kernel = np.ones((3,3),np.uint8) 
erosion = cv2.erode(img,kernel,iterations = 1)
cv_show('win',erosion)
  • 形态学-膨胀
img = cv2.imread('./data/s.jpg',cv2.IMREAD_GRAYSCALE)
kernel = np.ones((3,3),np.uint8) 
shuai = cv2.erode(img,kernel,iterations = 1)
kernel = np.ones((3,3),np.uint8) 
shuai_PLUS = cv2.dilate(shuai,kernel,iterations = 1)
cv_show('win',shuai_PLUS )
  • 开运算与闭运算
img = cv2.imread('./data/s.jpg',cv2.IMREAD_GRAYSCALE)
 
kernel = np.ones((5,5),np.uint8) 
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
 
cv_show('win',opening)
  • 梯度运算
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel)
 
cv_show('win',gradient)
  • 礼帽与黑帽
# 礼帽
img = cv2.imread('./data/s.jpg',cv2.IMREAD_GRAYSCALE)
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
cv_show('win',tophat)


# 黑帽
img = cv2.imread('./data/s.jpg',cv2.IMREAD_GRAYSCALE)
blackhat  = cv2.morphologyEx(img,cv2.MORPH_BLACKHAT, kernel)
cv_show('win',blackhat)
  • Sobel、Scharr、Laplacian算子
img = cv2.imread('./data/gd01.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)   
sobely = cv2.convertScaleAbs(sobely)  
sobelxy =  cv2.addWeighted(sobelx,0.5,sobely,0.5,0)  
 
scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)
scharry = cv2.Scharr(img,cv2.CV_64F,0,1)
scharrx = cv2.convertScaleAbs(scharrx)   
scharry = cv2.convertScaleAbs(scharry)  
scharrxy =  cv2.addWeighted(scharrx,0.5,scharry,0.5,0) 
 
laplacian = cv2.Laplacian(img,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)   
 
res = np.hstack((sobelxy,scharrxy,laplacian))
cv_show('res',res)

你可能感兴趣的:(opencv,计算机视觉,python)