概念:
Go中的channel 是一个队列,遵循先进先出的原则,负责协程之间的通信(Go 语言提倡不要通过共享内存来通信,而要通过通信来实现内存共享,CSP(Communicating Sequential Process)并发模型,就是通过 goroutine 和 channel 来实现的)
使用场景:
停止信号监听
定时任务
生产方和消费方解耦
控制并发数
底层数据结构:
通过var声明或者make函数创建的channel变量是一个存储在函数栈帧上的指针,占用8个字节,指向堆上的hchan结构体
源码包中src/runtime/chan.go
定义了hchan的数据结构:
hchan结构体:
type hchan struct { closed uint32 // channel是否关闭的标志 elemtype *_type // channel中的元素类型 // channel分为无缓冲和有缓冲两种。 // 对于有缓冲的channel存储数据,使用了 ring buffer(环形缓冲区) 来缓存写入的数据,本质是循环数组 // 为啥是循环数组?普通数组不行吗,普通数组容量固定更适合指定的空间,弹出元素时,普通数组需要全部都前移 // 当下标超过数组容量后会回到第一个位置,所以需要有两个字段记录当前读和写的下标位置 buf unsafe.Pointer // 指向底层循环数组的指针(环形缓冲区) qcount uint // 循环数组中的元素数量 dataqsiz uint // 循环数组的长度 elemsize uint16 // 元素的大小 sendx uint // 下一次写下标的位置 recvx uint // 下一次读下标的位置 // 尝试读取channel或向channel写入数据而被阻塞的goroutine recvq waitq // 读等待队列 sendq waitq // 写等待队列 lock mutex //互斥锁,保证读写channel时不存在并发竞争问题 }
等待队列:
双向链表,包含一个头结点和一个尾结点
每个节点是一个sudog结构体变量,记录哪个协程在等待,等待的是哪个channel,等待发送/接收的数据在哪里
type waitq struct { first *sudog last *sudog } type sudog struct { g *g next *sudog prev *sudog elem unsafe.Pointer c *hchan ... }
操作:
创建
使用 make(chan T, cap)
来创建 channel,make 语法会在编译时,转换为 makechan64
和 makechan
func makechan64(t *chantype, size int64) *hchan { if int64(int(size)) != size { panic(plainError("makechan: size out of range")) } return makechan(t, int(size)) }
创建channel 有两种,一种是带缓冲的channel,一种是不带缓冲的channel
// 带缓冲 ch := make(chan int, 3) // 不带缓冲 ch := make(chan int)
创建时会做一些检查:
- 元素大小不能超过 64K
- 元素的对齐大小不能超过 maxAlign 也就是 8 字节
- 计算出来的内存是否超过限制
创建时的策略:
- 如果是无缓冲的 channel,会直接给 hchan 分配内存
- 如果是有缓冲的 channel,并且元素不包含指针,那么会为 hchan 和底层数组分配一段连续的地址
- 如果是有缓冲的 channel,并且元素包含指针,那么会为 hchan 和底层数组分别分配地址
发送
发送操作,编译时转换为runtime.chansend
函数
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool
阻塞式:
调用chansend函数,并且block=true
ch <- 10
非阻塞式:
调用chansend函数,并且block=false
select { case ch <- 10: ... default }
向 channel 中发送数据时大概分为两大块:检查和数据发送,数据发送流程如下:
如果 channel 的读等待队列存在接收者goroutine
- 将数据直接发送给第一个等待的 goroutine, 唤醒接收的 goroutine
如果 channel 的读等待队列不存在接收者goroutine
- 如果循环数组buf未满,那么将会把数据发送到循环数组buf的队尾
- 如果循环数组buf已满,这个时候就会走阻塞发送的流程,将当前 goroutine 加入写等待队列,并挂起等待唤醒
接收
发送操作,编译时转换为runtime.chanrecv
函数
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool)
阻塞式:
调用chanrecv函数,并且block=true
非阻塞式:
调用chanrecv函数,并且block=false
select { case <-ch: ... default }
向 channel 中接收数据时大概分为两大块,检查和数据发送,而数据接收流程如下:
如果 channel 的写等待队列存在发送者goroutine
- 如果是无缓冲 channel,直接从第一个发送者goroutine那里把数据拷贝给接收变量,唤醒发送的 goroutine
- 如果是有缓冲 channel(已满),将循环数组buf的队首元素拷贝给接收变量,将第一个发送者goroutine的数据拷贝到 buf循环数组队尾,唤醒发送的 goroutine
如果 channel 的写等待队列不存在发送者goroutine
- 如果循环数组buf非空,将循环数组buf的队首元素拷贝给接收变量
- 如果循环数组buf为空,这个时候就会走阻塞接收的流程,将当前 goroutine 加入读等待队列,并挂起等待唤醒
关闭
关闭操作,调用close函数,编译时转换为runtime.closechan
函数
close(ch)
func closechan(c *hchan)
案例分析:
package main import ( "fmt" "time" "unsafe" ) func main() { // ch是长度为4的带缓冲的channel // 初始hchan结构体重的buf为空,sendx和recvx均为0 ch := make(chan string, 4) fmt.Println(ch, unsafe.Sizeof(ch)) go sendTask(ch) go receiveTask(ch) time.Sleep(1 * time.Second) } // G1是发送者 // 当G1向ch里发送数据时,首先会对buf加锁,然后将task存储的数据copy到buf中,然后sendx++,然后释放对buf的锁 func sendTask(ch chan string) { taskList := []string{"this", "is", "a", "demo"} for _, task := range taskList { ch <- task //发送任务到channel } } // G2是接收者 // 当G2消费ch的时候,会首先对buf加锁,然后将buf中的数据copy到task变量对应的内存里,然后recvx++,并释放锁 func receiveTask(ch chan string) { for { task := <-ch //接收任务 fmt.Println("received", task) //处理任务 } }
总结hchan结构体的主要组成部分有四个:
- 用来保存goroutine之间传递数据的循环数组:buf
- 用来记录此循环数组当前发送或接收数据的下标值:sendx和recvx
- 用于保存向该chan发送和从该chan接收数据被阻塞的goroutine队列: sendq 和 recvq
- 保证channel写入和读取数据时线程安全的锁:lock
以上就是Go底层channel实现原理及示例详解的详细内容,更多关于Go channel底层原理的资料请关注脚本之家其它相关文章!