【玩转yolov5】之anchor匹配策略(build_targets)分析(2)

    接上篇yolov5之anchor匹配策略(build_targets)分析(1)

            gxy = t[:, 2:4]  # grid xy
            gxi = gain[[2, 3]] - gxy  # inverse
            #这两个条件可以用来选择靠近的两个邻居网格
            j, k = ((gxy % 1. < g) & (gxy > 1.)).T
            l, m = ((gxi % 1. < g) & (gxi > 1.)).T
            j = torch.stack((torch.ones_like(j), j, k, l, m))
            t = t.repeat((5, 1, 1))[j] #过滤box
            offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] #过滤偏置

t已经是过滤后的gt box信息,gxy存储以特征图左上角为零点的gt box的(x,y)坐标。gxi这里通过gain[[2,3]]-gxy正好取了个反,表示的是以特征图右下角为零点的gt box的(x,y)坐标信息。yolov5在做计算正样本anchor时做了个大的调整:

1). 不同于yolov3,yolov4,其gt box可以跨层预测,即有些gt box在多个预测层都算正样本;

2).不同于yolov3,yolov4,其gt box可匹配的anchor数可为3~9个,显著增加了正样本的数量。不再是gt box落在那个网格就只由该网格内的anchor来预测,而是根据中心点的位置增加两个邻近的网格的anchor来共同预测。

【玩转yolov5】之anchor匹配策略(build_targets)分析(2)_第1张图片

(Pdb) print(j)
tensor([[ True,  True,  True,  True,  True,  True,  True,  True,  True,  True,  True,  True,  True,  True,  True,  True,  True,  True,  True,  True,  True, ...],
                [False, False, False,  True,  True, False, False, False,  True, False, False, False, False,  True,  True, False, False, False, False,  True, False, ...],
                [ True,  True,  True,  True,  True,  True, False, False, False, False,  True,  True,  True,  True,  True,  True, False, False, False, False,  True,...],
                [ True,  True,  True, False, False,  True,  True,  True, False,  True,  True,  True,  True, False, False,  True,  True,  True,  True, False,  True,...],
                [False, False, False, False, False, False,  True,  True,  True,  True, False, False, False, False, False, False,  True,  True,  True,  True, False,...]])
你看,对于任意一个gt box一定是有3个网格与之匹配。

(Pdb) torch.zeros_like(gxy).shape
torch.Size([29, 2])
(Pdb) torch.zeros_like(gxy)[None].shape
torch.Size([1, 29, 2])
(Pdb) off.shape
torch.Size([5, 2])
(Pdb) off[:,None].shape
torch.Size([5, 1, 2])
(Pdb) (torch.zeros_like(gxy)[None]+off[:,None]).shape
torch.Size([5, 29, 2])
(Pdb) (torch.zeros_like(gxy)[None]+off[:,None])[j].shape
torch.Size([87, 2])

        b, c = t[:, :2].long().T  # image, class
        gxy = t[:, 2:4]  # grid xy
        gwh = t[:, 4:6]  # grid wh
        gij = (gxy - offsets).long() #取整
        gi, gj = gij.T  # grid xy indices
        # Append
        a = t[:, 6].long()  # anchor indices
        indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices

b表示当前bbox属于该batch内第几张图片,我这里当然全是0,因为batch等于1嘛。a表示当前gt box和当前层的第几个anchor匹配上了。

(gi,gj)是我们计算出来的负责预测该gt box的网格的坐标。

(Pdb) indices
[

(tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),

tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]),

tensor([45, 45, 45, 43, 43, 45, 73, 73, 72, 74, 45, 45, 45, 43, 43, 45, 47, 73, 73, 72, 45, 45, 45, 43, 45, 47, 73, 73, 72, 43, 43, 72, 43, 43, 72, 43, 72, 44, 44, 44, 42, 42, 44, 44, 44, 44, 42, 42, 44, 44, 44, 44, 42, 44, 45, 45, 45, 45, 73, 73, 74, 45, 45, 45, 45, 47, 73, 73, 45, 45, 45, 45, 47, 73, 73, 74, 74, 73,75, 48, 74, 74, 73, 48, 74, 74, 73]),

tensor([20,  7,  2,  3, 10, 19, 10,  7, 21, 13, 20,  7,  2,  3, 10, 19, 22, 10,  7, 21, 20,  7,  2,  3, 19, 22, 10,  7, 21,  2,  9, 20,  2,  9, 20,  2, 20, 20,  7,  2,  3, 10, 19, 20,  7,  2,  3, 10, 19, 20,  7,  2,  3, 19, 21,  8,  3, 20, 11,  8, 14, 21,  8,  3, 20, 23, 11,  8, 21,  8,  3, 20, 23, 11,  8, 10,  7, 21,
        13, 22, 10,  7, 21, 22, 10,  7, 21]))

]

        tbox.append(torch.cat((gxy - gij, gwh), 1))  # 
        anch.append(anchors[a])  # anchors
        tcls.append(c)  # class

由于采用了跨网格预测,故xy预测输出不再是0-1,而是-1-1,加上offset偏移,则为-0.5-1.5。

(Pdb) tbox
[tensor([[ 7.94214e-01,  3.07404e-01,  2.06718e+00,  1.88433e+00],
        [ 7.05980e-01,  6.42929e-02,  3.34444e+00,  2.60274e+00],
        [ 9.11881e-01,  4.95827e-01,  4.72962e+00,  2.13167e+00],
        [ 3.40125e-01,  3.43548e-01,  1.65410e+00,  4.67637e+00],
        [ 2.58821e-01,  3.75946e-01,  8.37189e-01,  2.39581e+00],
        [ 7.20589e-01,  1.59073e-03,  1.34638e+00,  2.37982e+00],
        [ 9.99854e-01,  5.47440e-01,  1.49643e+00,  2.53927e+00],
        [ 7.29174e-01,  5.61737e-01,  1.18704e+00,  2.64536e+00],
        [ 7.24678e-02,  9.07990e-01,  2.33363e+00,  5.96677e+00],
        [ 7.57526e-01,  7.26974e-01,  5.69084e-01,  8.14987e-01],
        [ 7.94214e-01,  3.07404e-01,  2.06718e+00,  1.88433e+00],
        [ 7.05980e-01,  6.42929e-02,  3.34444e+00,  2.60274e+00],
        [ 9.11881e-01,  4.95827e-01,  4.72962e+00,  2.13167e+00],
        [ 3.40125e-01,  3.43548e-01,  1.65410e+00,  4.67637e+00],
        [ 2.58821e-01,  3.75946e-01,  8.37189e-01,  2.39581e+00],
        [ 7.20589e-01,  1.59073e-03,  1.34638e+00,  2.37982e+00],
        [ 5.97118e-01,  9.40834e-01,  5.71178e+00,  1.92723e+00],
        [ 9.99854e-01,  5.47440e-01,  1.49643e+00,  2.53927e+00],
        [ 7.29174e-01,  5.61737e-01,  1.18704e+00,  2.64536e+00],
        [ 7.24678e-02,  9.07990e-01,  2.33363e+00,  5.96677e+00],
        ......
        [-1.45912e-04,  5.47440e-01,  1.49643e+00,  2.53927e+00],
        [-2.70826e-01,  5.61737e-01,  1.18704e+00,  2.64536e+00],
        [ 9.99854e-01, -4.52560e-01,  1.49643e+00,  2.53927e+00],
        [ 7.29174e-01, -4.38263e-01,  1.18704e+00,  2.64536e+00],
        [ 7.24678e-02, -9.20105e-02,  2.33363e+00,  5.96677e+00],
        [ 7.57526e-01, -2.73026e-01,  5.69084e-01,  8.14987e-01],
        [ 5.97118e-01, -5.91660e-02,  5.71178e+00,  1.92723e+00],
        [ 9.99854e-01, -4.52560e-01,  1.49643e+00,  2.53927e+00],
        [ 7.29174e-01, -4.38263e-01,  1.18704e+00,  2.64536e+00],
        [ 7.24678e-02, -9.20105e-02,  2.33363e+00,  5.96677e+00],
        [ 5.97118e-01, -5.91660e-02,  5.71178e+00,  1.92723e+00],
        [ 9.99854e-01, -4.52560e-01,  1.49643e+00,  2.53927e+00],
        [ 7.29174e-01, -4.38263e-01,  1.18704e+00,  2.64536e+00],
        [ 7.24678e-02, -9.20105e-02,  2.33363e+00,  5.96677e+00]])]
(Pdb) anch
[tensor([[1.25000, 1.62500],
        [1.25000, 1.62500],
        [1.25000, 1.62500],
        [1.25000, 1.62500],
        [1.25000, 1.62500],
        [1.25000, 1.62500],
        [1.25000, 1.62500],
       ......
        [1.25000, 1.62500],
        [1.25000, 1.62500],
        [1.25000, 1.62500],
        [1.25000, 1.62500],
        [2.00000, 3.75000],
        [2.00000, 3.75000],
        [2.00000, 3.75000],
        [2.00000, 3.75000],
        [4.12500, 2.87500],
        [4.12500, 2.87500],
        [4.12500, 2.87500],
        [4.12500, 2.87500]])]
(Pdb) tcls
[tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]
 

你可能感兴趣的:(yolov5,yolov5,build_targets,anchor匹配)