- 大数据集群架构hadoop集群、Hbase集群、zookeeper、kafka、spark、flink、doris、dataeas(二)
争取不加班!
hadoophbasezookeeper大数据运维
zookeeper单节点部署wget-chttps://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz下载地址tarxfapache-zookeeper-3.8.4-bin.tar.gz-C/data/&&mv/data/apache-zookeeper-3.8.4-bin//data/zoo
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- 数据同步工具对比:Canal、DataX与Flink CDC
智慧源点
大数据flink大数据
在现代数据架构中,数据同步是构建数据仓库、实现实时分析、支持业务决策的关键环节。Canal、DataX和FlinkCDC作为三种主流的数据同步工具,各自有着不同的设计理念和适用场景。本文将深入探讨这三者的技术特点、使用场景以及实践中的差异,帮助开发者根据实际需求选择合适的工具。1.工具概述1.1CanalCanal是阿里巴巴开源的一款基于MySQL数据库增量日志(binlog)解析的组件,主要用于
- 4_Flink CEP
frimiku
flink大数据云计算
FlinkCEP1、何为CEP?CEP,全称为复杂事件处理(ComplexEventProcessing),是一种用于实时监测和分析数据流的技术。CEP详细讲解:CEP是基于动态环境的事件流的分析技术,事件是状态变化(持续生成数据)的。通过分析事件间的关系,利用过滤、关联、聚合等技术,根据事件间的【时序关系和聚合关系】制定检测规则,持续地从事件流中查询出【符合规则要求】的事件序列,最终分析得到更复
- Flink项目基础配置指南
Edingbrugh.南空
flink大数据flink大数据
在大数据处理领域,ApacheFlink凭借强大的实时流处理和批处理能力,成为众多开发者的首选工具。在日常工作中,开发FlinkJar任务是常见需求,但每次都需重复配置日志、梳理pom依赖、设置打包插件等,流程繁琐且易出错。为提升开发效率,减少重复劳动,将这些基础配置进行整理归纳十分必要。本文将围绕Flink项目的本地日志配置、pom依赖及插件配置展开详细介绍,为开发者提供一套可直接复用的基础配置
- Apache SeaTunnel Flink引擎执行流程源码分析
Code Monkey’s Lab
源码分析Flinkflink大数据架构seatunnel
目录1.任务启动入口2.任务执行命令类:FlinkTaskExecuteCommand3.FlinkExecution的创建与初始化3.1核心组件初始化3.2关键对象说明4.任务执行:FlinkExecution.execute()5.Source处理流程5.1插件初始化5.2数据流生成6.Transform处理流程6.1插件初始化6.2转换执行7.Sink处理流程7.1插件初始化7.2数据输出执
- Beam2.61.0版本消费kafka重复问题排查
隔壁寝室老吴
kafkalinq分布式
1.问题出现过程在测试环境测试flink的job的任务消费kafka的情况,通过往job任务发送一条消息,然后flinkwebui上消费出现了两条。然后通过重启JobManager和TaskManager后,任务从checkpoint恢复后就会出现重复消费。当任务不从checkpoint恢复的时候,任务不会出现重复消费的情况。由此可见是beam从checkpoint恢复的时候出现了重复消费的问题。
- Flink CDC同步Oracle无主键表
Zzz...209
javaflinkoracle
FlinkCDC同步Oracle无主键表问题背景问题解决问题背景FlinkCDC是一种很强大且实用的实时数据同步工具,官网如下。链接:link但是在实际使用过程中还是会有些不足之处,比如说同步Oracle数据库中无主键以及唯一键的表时,关于目标端的幂等性时无法保证的。问题解决在Oracle数据库中,表中有一个伪列ROWID,而在CDC同步过来的数据中是不包含此列的。修改源码如下,使之携带ROWID
- Flink Oracle CDC Connector详解
24k小善
flinkjava大数据
1.FlinkOracleCDCConnector核心功能功能模块描述实时数据捕获实时捕捉Oracle数据库中的DML操作(INSERT,UPDATE,DELETE)。Schema变更支持支持部分DDL操作的检测(如表结构变更)。端到端一致性确保数据从Oracle到Flink的传输过程中的完整性和一致性。可扩展性支持高吞吐量和大规模数据处理需求。容错机制具备断点续传能力,确保在中断后能够从上次的位
- Apache Flink深度解析:现代流处理引擎
暴躁哥
大数据技术apacheflink大数据
好的,我来帮您写一篇关于Flink技术的详细介绍博客:ApacheFlink深度解析:现代流处理引擎一、Flink简介ApacheFlink是一个开源的分布式流处理和批处理统一计算引擎。它提供了数据流上的状态计算、精确一次性语义保证、高吞吐、低延迟等特性,能够运行在所有常见的集群环境中。1.1核心特性统一的流批处理精确一次性语义事件时间处理有状态计算高吞吐和低延迟高可用性配置内存管理二、Flink
- Flink SQL Connector Kafka 核心参数全解析与实战指南
Edingbrugh.南空
kafkaflink大数据flinksqlkafka
FlinkSQLConnectorKafka是连接FlinkSQL与Kafka的核心组件,通过将Kafka主题抽象为表结构,允许用户使用标准SQL语句完成数据读写操作。本文基于ApacheFlink官方文档(2.0版本),系统梳理从表定义、参数配置到实战调优的全流程指南,帮助开发者高效构建实时数据管道。一、依赖配置与环境准备1.1Maven依赖引入在FlinkSQL项目中使用Kafka连接器需添加
- Flink部署与应用——Flink集群模式
黄雪超
从0开始学Flinkflink大数据
Flink集群模式在大数据处理领域,ApacheFlink凭借其卓越的流批一体化处理能力,成为众多企业的首选框架。而Flink集群模式的选择与运用,对于充分发挥Flink的性能优势、满足不同业务场景的需求至关重要。接下来,我们将深入探讨Flink的多种集群模式,剖析其特点、适用场景及相互间的差异。集群部署模式对比Flink的集群部署模式可依据两个关键维度进行分类:一是集群的生命周期和资源隔离方式;
- Spark Streaming 与 Flink 实时数据处理方案对比与选型指南
浅沫云归
后端技术栈小结spark-streamingflinkreal-time
SparkStreaming与Flink实时数据处理方案对比与选型指南实时数据处理在互联网、电商、物流、金融等领域均有大量应用,面对海量流式数据,SparkStreaming和Flink成为两大主流开源引擎。本文基于生产环境需求,从整体架构、编程模型、容错机制、性能表现、实践案例等维度进行深入对比,并给出选型建议。一、问题背景介绍业务场景日志实时统计与告警用户行为实时画像实时订单或交易监控流式ET
- 现代数据湖架构全景解析:存储、表格式、计算引擎与元数据服务的协同生态
讲文明的喜羊羊拒绝pua
大数据架构数据湖SparkIcebergAmoro对象存储
本文全面剖析现代数据湖架构的核心组件,深入探讨对象存储(OSS/S3)、表格式(Iceberg/Hudi/DeltaLake)、计算引擎(Spark/Flink/Presto)及元数据服务(HMS/Amoro)的协作关系,并提供企业级选型指南。一、数据湖架构演进与核心价值数据湖架构演进历程现代数据湖核心价值矩阵维度传统数仓现代数据湖存储成本高(专有硬件)低(对象存储)数据时效性小时/天级分钟/秒级
- 69、Flink 的 DataStream Connector 之 Kafka 连接器详解
猫猫爱吃小鱼粮
Flink-1.19从0到精通flinkkafka大数据
1.概述Flink提供了Kafka连接器使用精确一次(Exactly-once)的语义在Kafkatopic中读取和写入数据。目前还没有Flink1.19可用的连接器。2.KafkaSourcea)使用方法KafkaSource提供了构建类来创建KafkaSource的实例。以下代码片段展示了如何构建KafkaSource来消费“input-topic”最早位点的数据,使用消费组“my-group
- Flink SourceFunction深度解析:数据输入的起点与奥秘
Edingbrugh.南空
flink大数据flink大数据
在Flink的数据处理流程中,StreamGraph构建起了作业执行的逻辑框架,而数据的源头则始于SourceFunction。作为Flink数据输入的关键组件,SourceFunction负责从外部数据源读取数据,并将其转换为Flink作业能够处理的格式。深入理解SourceFunction的原理与实现,对于构建高效、稳定的数据处理链路至关重要。接下来,我们将结合有道云笔记内容,对FlinkSo
- 【Flink实战】 Flink SQL 中处理字符串 `‘NULL‘` 并转换为 `BIGINT`
roman_日积跬步-终至千里
#flink实战sqlflink数据库
文章目录一、问题描述解决方案解释一、问题描述当我们尝试将字符串'NULL'直接转换为BIGINT时,会遇到NumberFormatException,因为'NULL'不是一个有效的数字字符串。为了避免这种错误,我们需要在转换之前进行检查。解决方案我们可以使用CASE语句来实现条件转换。具体步骤如下:使用CASE语句进行条件判断:检查字符串是否为'NULL',如果是'NULL',则返回0;否则,将字
- Flink状态和容错-基础篇
有数的编程笔记
Flinkflink大数据
1.概念flink的状态和容错绕不开3个概念,statebackends和checkpoint、savepoint。本文重心即搞清楚这3部分内容。容错机制是基于在状态快照的一种恢复方式。但是状态和容错要分开来看。什么是状态,为什么需要状态?流计算和批计算在数据源上最大的区别是,流计算中的数据是无边界的,数据持续不断,而批计算中数据是有边界的,在计算时可以一次性将数据全部拿到。在流计算中无法拿到全部
- flink:风控/反欺诈检测系统案例研究1,2,3
菠萝科技
java·未分类flinkflink风控欺诈
https://flink.apache.org/news/2020/01/15/demo-fraud-detection.htmlhttps://flink.apache.org/news/2020/03/24/demo-fraud-detection-2.htmlhttps://flink.apache.org/news/2020/07/30/demo-fraud-detection-3.ht
- 实时反欺诈:基于 Spring Boot 与 Flink 构建信用卡风控系统
程序员leon
风控大数据系列springbootflink后端风控
在金融科技飞速发展的今天,信用卡欺诈手段日益高明和快速。传统的基于批处理的事后分析模式已难以应对实时性要求极高的欺诈场景。本文将详细介绍如何利用SpringBoot和ApacheFlink这对强大的组合,构建一个高性能、可扩展的实时信用卡反欺诈系统。一、核心思想:从“单点”到“模式”传统的反欺诈规则可能只关注单笔交易的某个特征,比如“金额是否过大”。而现代的欺诈行为往往是一种模式(Pattern)
- Flink SQL解析工具类实现:从SQL到数据血缘的完整解析
Edingbrugh.南空
flink大数据flinksql大数据
在大数据处理领域,FlinkSQL作为流批统一的声明式编程接口,已成为数据处理的核心组件。本文将深入解析一个FlinkSQL解析工具类的实现,该工具能够解析FlinkSQL语句,提取表定义、操作关系及数据血缘信息,为数据治理、血缘分析和SQL验证提供基础能力。工具类核心功能概述FlinkParserUtil类实现了FlinkSQL的解析功能,主要包含以下核心能力:SQL过滤与解析:过滤自定义函数声
- 探秘Flink Connector加载机制:连接外部世界的幕后引擎
Edingbrugh.南空
flink大数据flink大数据
在Flink的数据处理生态中,SourceFunction负责数据的输入源头,而真正架起Flink与各类外部存储、消息系统桥梁的,则是Connector。从Kafka消息队列到HDFS文件系统,从MySQL数据库到Elasticsearch搜索引擎,Flink通过Connector实现了与多样化外部系统的交互。而这一切交互的基础,都离不开背后强大且精巧的Connector加载机制。接下来,我们将深
- 探秘Flink Streaming Source Analysis:一个强大的流处理源码解析工具
强妲佳Darlene
探秘FlinkStreamingSourceAnalysis:一个强大的流处理源码解析工具去发现同类优质开源项目:https://gitcode.com/项目简介在大数据实时处理领域,ApacheFlink是一个不可或缺的名字。而flink-streaming-source-analysis项目是由开发者mickey0524创建的一个开源工具,旨在帮助我们更深入地理解和分析Flink流处理的源代码
- Flink SQL 解析器与 Calcite 在大数据处理中的应用
JieLun_C
flinksql大数据
FlinkSQL解析器与Calcite在大数据处理中的应用在大数据处理领域中,FlinkSQL解析器与Calcite是两个重要的组件,它们在解析和优化FlinkSQL查询方面发挥着关键作用。本文将介绍FlinkSQL解析器和Calcite的基本概念,并给出一些示例代码,以帮助读者更好地理解它们的用途和工作原理。FlinkSQL解析器FlinkSQL解析器是Flink提供的一个模块,用于将SQL查询
- Flink系列-背压(反压)
Empty-cup
Flinkflink大数据
目录了解背压什么是背压背压产生的原因背压导致的影响定位背压解决背压了解背压什么是背压在流式处理系统中,如果出现下游消费的速度跟不上上游生产数据的速度,就种现象就叫做背压(backpressure,也叫反压)背压产生的原因下游消费的速度跟不上上游生产数据的速度,可能出现的原因如下:节点有性能瓶颈,可能是该节点所在的机器有网络、磁盘等等故障,机器的网络延迟和磁盘不足、频繁GC、数据热点等原因。数据源生
- Flink中的反压与背压:原理、检测与应对
Edingbrugh.南空
大数据flinkflink大数据
在大数据流处理领域,Flink以其高效、灵活的特性被广泛应用。然而,在数据的高速流动与处理过程中,数据生产速度和消费速度的不匹配问题时常出现,这就引出了流处理系统中的重要概念——反压(Backpressure)和背压(Backpressure)。尽管名称表述略有差异,但二者本质上描述的是同一类情况,它们的有效处理对保障Flink系统的稳定性和性能起着关键作用。一、反压与背压:概念解析反压(Back
- Flink SQL执行流程深度剖析:从SQL语句到分布式执行
Edingbrugh.南空
大数据flinkflinksql分布式
在大数据处理领域,FlinkSQL凭借其强大的处理能力和易用性,成为众多开发者的选择。与其他OLAP引擎类似,FlinkSQL的SQL执行流程大致都需要经过词法解析、语法解析、生成抽象语法树(AST)、校验以及生成逻辑执行计划等步骤。整体流程可笼统地概括为两大阶段:从SQL到Operation的转换,再从Operation到Transformation的转换,最终进入分布式执行阶段。接下来,我们将
- 互联网大数据求职面试:从Zookeeper到Flink的技术探讨
场景:互联网大数据求职面试在一个阳光明媚的下午,小白来到了知名互联网公司,准备接受他人生中最重要的一次面试。他的面试官是以严肃和专业著称的老黑。第一轮提问:分布式系统与协调老黑:小白,你能解释一下Zookeeper在分布式系统中的作用吗?小白:哦,这个简单,Zookeeper是一个分布式协调服务,主要用来解决分布式系统中数据一致性问题,比如选主、配置管理和命名服务。老黑:不错,那你知道Yarn是如
- 数据仓库面试题合集⑥
晴天彩虹雨
数据仓库面试解析集锦数据仓库大数据clickhousekafka
实时指标体系设计+Flink优化实战:面试高频问题+项目答题模板面试中不仅会问“你做过实时处理吗?”,更会追问:“实时指标体系是怎么搭建的?”、“你们的Flink稳定性怎么保证?”本篇聚焦实时指标体系设计与Flink优化场景,帮你答出架构设计力,也答出调优实战感。①面试核心问题导读“你们实时指标是怎么设计的?”“怎么处理指标的去重、延迟和聚合问题?”“你们的Flink作业怎么做资源优化?”“有没有
- flink的多种部署模式
Azoner
flink
##部署模式和运行模式###部署模式-本地local-单机无需分布式资源管理-集群-独立集群standalone-需要flink自身的任务管理工具-jobmanager接收和调度任务-taskmanager执行-on其他资源管理工具yarn/k8s-yarn-注意区分flink的和yarn的taskmanager###运行模式-session-先启动一个集群,保持一个会话,在这个会话中通过客户端提
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla