欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智能40篇、Python安全20篇、其他技巧10篇。您的关注、点赞和转发就是对秀璋最大的支持,知识无价人有情,希望我们都能在人生路上开心快乐、共同成长。
该系列文章主要讲解Python OpenCV图像处理和图像识别知识,前期主要讲解图像处理基础知识、OpenCV基础用法、常用图像绘制方法、图像几何变换等,中期讲解图像处理的各种运算,包括图像点运算、形态学处理、图像锐化、图像增强、图像平滑等,后期研究图像识别、图像分割、图像分类、图像特效处理以及图像处理相关应用。
第二部分将讲解图像运算和图像增强,上一篇文章介绍介绍顶帽运算和底帽运算。这篇文章将进入新的系列,讲解图像直方图理论知识和绘制方法,本文将从OpenCV和Matplotlib两个方面介绍如何绘制直方图,这将为图像处理像素对比提供有效支撑。希望文章对您有所帮助,如果有不足之处,还请海涵。
下载地址:记得点赞喔 O(∩_∩)O
前文赏析:
第一部分 基础语法
第二部分 网络爬虫
第三部分 数据分析和机器学习
第四部分 Python图像处理基础
第五部分 Python图像运算和图像增强
第六部分 Python图像识别和图像高阶案例
第七部分 NLP与文本挖掘
第八部分 人工智能入门知识
第九部分 网络攻防与AI安全
第十部分 知识图谱构建实战
扩展部分 人工智能高级案例
作者新开的“娜璋AI安全之家”将专注于Python和安全技术,主要分享Web渗透、系统安全、人工智能、大数据分析、图像识别、恶意代码检测、CVE复现、威胁情报分析等文章。虽然作者是一名技术小白,但会保证每一篇文章都会很用心地撰写,希望这些基础性文章对你有所帮助,在Python和安全路上与大家一起进步。
灰度直方图是灰度级的函数,描述的是图像中每种灰度级像素的个数,反映图像中每种灰度出现的频率。假设存在一幅6×6像素的图像,接着统计其1至6灰度级的出现频率,并绘制如图1所示的柱状图,其中横坐标表示灰度级,纵坐标表示灰度级出现的频率[1-2]。
如果灰度级为0-255(最小值0为黑色,最大值255为白色),同样可以绘制对应的直方图,如图2所示,左边是一幅灰度图像(Lena灰度图),右边是对应各像素点的灰度级频率。
为了让图像各灰度级的出现频数形成固定标准的形式,可以通过归一化方法对图像直方图进行处理,将待处理的原始图像转换成相应的标准形式[3]。假设变量r表示图像中像素灰度级,归一化处理后会将r限定在下述范围:
在灰度级中,r为0时表示黑色,r为1时表示白色。对于一幅给定图像,每个像素值位于[0,1]区间之内,接着计算原始图像的灰度分布,用概率密度函数P®实现。为了更好地进行数字图像处理,必须引入离散形式。在离散形式下,用rk表示离散灰度级,P(rk)代替P®,并满足公式(2)。
公式中,nk为图像中出现rk这种灰度的像素数,n是图像中像素总数,是概率论中的频数,l是灰度级总数(通常l为256级灰度)。接着在直角坐标系中做出rk和P(rk)的关系图,则成为灰度级的直方图[4]。
假设存在一幅3×3像素的图像,其像素值如公式(3)所示,则归一化直方图的步骤如下:
首先统计各灰度级对应的像素个数。用x数组统计像素点的灰度级,y数组统计具有该灰度级的像素个数。其中,灰度为1的像素共3个,灰度为2的像素共1个,灰度为3的像素共2个,灰度为4的像素共1个,灰度为5的像素共2个。
接着统计总像素个数,如公式(5)所示。
最后统计各灰度级的出现概率,通过公式(6)进行计算,其结果如下:
绘制的归一化图行如图3所示,横坐标表示图像中各个像素点的灰度级,纵坐标表示出现这个灰度级的概率。
直方图被广泛应用于计算机视觉领域,在使用边缘和颜色确定物体边界时,通过直方图能更好地选择边界阈值,进行阈值化处理。同时,直方图对物体与背景有较强对比的景物的分割特别有用,可以应用于检测视频中场景的变换及图像中的兴趣点。
首先讲解使用OpenCV库绘制直方图的方法。在OpenCV中可以使用calcHist()函数计算直方图,计算完成之后采用OpenCV中的绘图函数,如绘制矩形的rectangle()函数,绘制线段的line()函数来完成。其中,cv2.calcHist()的函数原型及常见六个参数如下:
hist = cv2.calcHist(images, channels, mask, histSize, ranges, accumulate)
接下来的代码是计算图像各灰度级的大小、形状及频数,接着调用plot()函数绘制直方图曲线。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
#读取图像
src = cv2.imread('lena-hd.png')
#计算256灰度级的图像直方图
hist = cv2.calcHist([src], [0], None, [256], [0,255])
#输出直方图大小、形状、数量
print(hist.size)
print(hist.shape)
print(hist)
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#显示原始图像和绘制的直方图
plt.subplot(121)
plt.imshow(src, 'gray')
plt.axis('off')
plt.title("(a)Lena灰度图像")
plt.subplot(122)
plt.plot(hist, color='r')
plt.xlabel("x")
plt.ylabel("y")
plt.title("(b)直方图曲线")
plt.show()
上述代码绘制的“Lena”灰度图像所对应的直方图曲线如图4所示,图4(a)表示原图像,图4(b)表示对应的灰度直方图曲线。
同时输出直方图的大小、形状及数量,如下所示:
256
(256L, 1L)
[[7.000e+00]
[1.000e+00]
[0.000e+00]
[6.000e+00]
[2.000e+00]
....
[1.000e+00]
[3.000e+00]
[2.000e+00]
[1.000e+00]
[0.000e+00]]
彩色图像调用OpenCV绘制直方图的算法与灰度图像一样,只是从B、G、R三个放量分别进行计算及绘制,具体代码如下所示。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
#读取图像
src = cv2.imread('lena.png')
#转换为RGB图像
img_rgb = cv2.cvtColor(src, cv2.COLOR_BGR2RGB)
#计算直方图
histb = cv2.calcHist([src], [0], None, [256], [0,255])
histg = cv2.calcHist([src], [1], None, [256], [0,255])
histr = cv2.calcHist([src], [2], None, [256], [0,255])
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#显示原始图像和绘制的直方图
plt.subplot(121)
plt.imshow(img_rgb, 'gray')
plt.axis('off')
plt.title("(a)Lena原始图像")
plt.subplot(122)
plt.plot(histb, color='b')
plt.plot(histg, color='g')
plt.plot(histr, color='r')
plt.xlabel("x")
plt.ylabel("y")
plt.title("(b)直方图曲线")
plt.show()
最终绘制的“Lena”彩色图像及其对应的彩色直方图曲线如图5所示,其中图5(a)表示Lena原始图像,图5(b)表示对应的彩色直方图曲线。
Matplotlib是Python强大的数据可视化工具,主要用于绘制各种2D图形。本小节Python绘制直方图主要调用matplotlib.pyplot库中hist()函数实现,它会根据数据源和像素级绘制直方图。其函数主要包括五个常用的参数,如下所示:
n, bins, patches = plt.hist(arr, bins=50, normed=1, facecolor=‘green’, alpha=0.75)
图像直方图的Python实现代码如下所示,该示例主要是通过matplotlib.pyplot库中的hist()函数绘制的。注意,读取的“lena-hd.png”图像的像素为二维数组,而hist()函数的数据源必须是一维数组,通常需要通过函数ravel()拉直图像。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图像
src = cv2.imread('lena-hd.png')
#绘制直方图
plt.hist(src.ravel(), 256)
plt.xlabel("x")
plt.ylabel("y")
plt.show()
#显示原始图像
cv2.imshow("src", src)
cv2.waitKey(0)
cv2.destroyAllWindows()
读取显示的“lena”灰度图像如图6所示。
最终的灰度直方图如图7所示,它将Lena图256级灰度和各个灰度级的频数绘制出来,其中x轴表示图像的256级灰度,y轴表示各个灰度级的频数。
如果调用下列函数,则绘制的直方图是经过标准化处理,并且颜色为绿色、透明度为0.75的直方图,如图8所示。
彩色直方图是高维直方图的特例,它统计彩色图片RGB各分量出现的频率,即彩色概率分布信息。彩色图片的直方图和灰度直方图一样,只是分别画出三个通道的直方图,然后再进行叠加,其代码如下所示。Lena彩色原始图像如图9所示。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图像
src = cv2.imread('Lena.png')
#获取BGR三个通道的像素值
b, g, r = cv2.split(src)
#绘制直方图
plt.figure("Lena")
#蓝色分量
plt.hist(b.ravel(), bins=256, density=1, facecolor='b', edgecolor='b', alpha=0.75)
#绿色分量
plt.hist(g.ravel(), bins=256, density=1, facecolor='g', edgecolor='g', alpha=0.75)
#红色分量
plt.hist(r.ravel(), bins=256, density=1, facecolor='r', edgecolor='r', alpha=0.75)
plt.xlabel("x")
plt.ylabel("y")
plt.show()
#显示原始图像
cv2.imshow("src", src)
cv2.waitKey(0)
cv2.destroyAllWindows()
绘制的彩色直方图如图10所示,包括红色、绿色、蓝色三种对比。
如果希望将三个颜色分量的柱状图分开绘制并进行对比,则使用下面的代码实现,调用plt.figure(figsize=(8, 6))函数绘制窗口,以及plt.subplot()函数分别绘制4个子图。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
#读取图像
src = cv2.imread('lena.png')
#转换为RGB图像
img_rgb = cv2.cvtColor(src, cv2.COLOR_BGR2RGB)
#获取BGR三个通道的像素值
b, g, r = cv2.split(src)
print(r,g,b)
plt.figure(figsize=(8, 6))
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#原始图像
plt.subplot(221)
plt.imshow(img_rgb)
plt.axis('off')
plt.title("(a)原图像")
#绘制蓝色分量直方图
plt.subplot(222)
plt.hist(b.ravel(), bins=256, density=1, facecolor='b', edgecolor='b', alpha=0.75)
plt.xlabel("x")
plt.ylabel("y")
plt.title("(b)蓝色分量直方图")
#绘制绿色分量直方图
plt.subplot(223)
plt.hist(g.ravel(), bins=256, density=1, facecolor='g', edgecolor='g', alpha=0.75)
plt.xlabel("x")
plt.ylabel("y")
plt.title("(c)绿色分量直方图")
#绘制红色分量直方图
plt.subplot(224)
plt.hist(r.ravel(), bins=256, density=1, facecolor='r', edgecolor='r', alpha=0.75)
plt.xlabel("x")
plt.ylabel("y")
plt.title("(d)红色分量直方图")
plt.show()
最终输出的图形如图11所示,,图11(a)表示原图像,图11(b)表示蓝色分量直方图,图11©表示绿色分量直方图,图11(d)表示红色分类直方图。
本文主要讲解图像直方图理论知识以及直方图绘制方法,并且包括Matplotlib和OpenCV两种统计及绘制方法。灰度直方图是灰度级的函数,描述的是图像中每种灰度级像素的个数,反映图像中每种灰度出现的频率。这篇文章的知识点将为后续图像处理和图像运算对比提供支撑。
感谢在求学路上的同行者,不负遇见,勿忘初心。图像处理系列主要包括三部分,分别是:
(By:Eastmount 2022-08-10 夜于武汉 http://blog.csdn.net/eastmount/ )
参考文献: