欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智能40篇、Python安全20篇、其他技巧10篇。您的关注、点赞和转发就是对秀璋最大的支持,知识无价人有情,希望我们都能在人生路上开心快乐、共同成长。
该系列文章主要讲解Python OpenCV图像处理和图像识别知识,前期主要讲解图像处理基础知识、OpenCV基础用法、常用图像绘制方法、图像几何变换等,中期讲解图像处理的各种运算,包括图像点运算、形态学处理、图像锐化、图像增强、图像平滑等,后期研究图像识别、图像分割、图像分类、图像特效处理以及图像处理相关应用。
第二部分将讲解图像运算和图像增强,上一篇文章介绍图像灰度线性变换,包括灰度上移、对比度增强、对比度减弱和灰度反色变换。这篇文章将详细讲解图像灰度非线性变换。图像灰度非线性变换主要包括对数变换、幂次变换、指数变换、分段函数变换,通过非线性关系对图像进行灰度处理,本文主要讲解三种常见类型的灰度非线性变换。希望文章对您有所帮助,如果有不足之处,还请海涵。
下载地址:
前文赏析:
第一部分 基础语法
第二部分 网络爬虫
第三部分 数据分析和机器学习
第四部分 Python图像处理基础
第五部分 Python图像运算和图像增强
第六部分 Python图像识别和图像高阶案例
第七部分 NLP与文本挖掘
第八部分 人工智能入门知识
第九部分 网络攻防与AI安全
第十部分 知识图谱构建实战
扩展部分 人工智能高级案例
作者新开的“娜璋AI安全之家”将专注于Python和安全技术,主要分享Web渗透、系统安全、人工智能、大数据分析、图像识别、恶意代码检测、CVE复现、威胁情报分析等文章。虽然作者是一名技术小白,但会保证每一篇文章都会很用心地撰写,希望这些基础性文章对你有所帮助,在Python和安全路上与大家一起进步。
原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下:
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('luo.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像灰度非线性变换:DB=DA×DA/255
for i in range(height):
for j in range(width):
gray = int(grayImage[i,j])*int(grayImage[i,j]) / 255
result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
图像灰度非线性变换的输出结果如图13-1所示:
图像灰度的对数变换一般表示如公式(13-1)所示:
其中c为尺度比较常数,DA为原始图像灰度值,DB为变换后的目标灰度值。如图13-2所示,它表示对数曲线下的灰度值变化情况,其中x表示原始图像的灰度值,y表示对数变换之后的目标灰度值。
由于对数曲线在像素值较低的区域斜率大,在像素值较高的区域斜率较小,所以图像经过对数变换后,较暗区域的对比度将有所提升。这种变换可用于增强图像的暗部细节,从而用来扩展被压缩的高值图像中的较暗像素。
对数变换实现了扩展低灰度值而压缩高灰度值的效果,被广泛地应用于频谱图像的显示中。一个典型的应用是傅立叶频谱,其动态范围可能宽达0~106直接显示频谱时,图像显示设备的动态范围往往不能满足要求,从而丢失大量的暗部细节;而在使用对数变换之后,图像的动态范围被合理地非线性压缩,从而可以清晰地显示。
在图13-3中,未经变换的频谱经过对数变换后,增加了低灰度区域的对比度,从而增强暗部的细节。
下面的代码实现了图像灰度的对数变换。
# -*- coding: utf-8 -*-
# By:Eastmount
import numpy as np
import matplotlib.pyplot as plt
import cv2
#绘制曲线
def log_plot(c):
x = np.arange(0, 256, 0.01)
y = c * np.log(1 + x)
plt.plot(x, y, 'r', linewidth=1)
plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
plt.title('对数变换函数')
plt.xlabel('x')
plt.ylabel('y')
plt.xlim(0, 255), plt.ylim(0, 255)
plt.show()
#对数变换
def log(c, img):
output = c * np.log(1.0 + img)
output = np.uint8(output + 0.5)
return output
#读取原始图像
img = cv2.imread('dark.png')
#绘制对数变换曲线
log_plot(42)
#图像灰度对数变换
output = log(42, img)
#显示图像
cv2.imshow('Input', img)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()
图13-4表示经过对数函数处理后的效果图,对数变换对于整体对比度偏低并且灰度值偏低的图像增强效果较好。
对应的对数函数曲线如图13-5所示,其中x表示原始图像的灰度值,y表示对数变换之后的目标灰度值。
伽玛变换又称为指数变换或幂次变换,是另一种常用的灰度非线性变换。图像灰度的伽玛变换一般表示如公式(13-2)所示:
Python实现图像灰度的伽玛变换代码如下,主要调用幂函数实现。
# -*- coding: utf-8 -*-
# By:Eastmount
import numpy as np
import matplotlib.pyplot as plt
import cv2
#绘制曲线
def gamma_plot(c, v):
x = np.arange(0, 256, 0.01)
y = c*x**v
plt.plot(x, y, 'r', linewidth=1)
plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
plt.title('伽马变换函数')
plt.xlabel('x')
plt.ylabel('y')
plt.xlim([0, 255]), plt.ylim([0, 255])
plt.show()
#伽玛变换
def gamma(img, c, v):
lut = np.zeros(256, dtype=np.float32)
for i in range(256):
lut[i] = c * i ** v
output_img = cv2.LUT(img, lut) #像素灰度值的映射
output_img = np.uint8(output_img+0.5)
return output_img
#读取原始图像
img = cv2.imread('white.png')
#绘制伽玛变换曲线
gamma_plot(0.00000005, 4.0)
#图像灰度伽玛变换
output = gamma(img, 0.00000005, 4.0)
#显示图像
cv2.imshow('Imput', img)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()
图13-6表示经过伽玛变换处理后的效果图,伽马变换对于图像对比度偏低,并且整体亮度值偏高(或由于相机过曝)情况下的图像增强效果明显。
对应的伽马变换曲线如图13-7所示,其中x表示原始图像的灰度值,y表示伽马变换之后的目标灰度值。
本文主要讲解图像灰度非线性变换,包括图像对数变换和伽马变换。其中,图像经过对数变换后,较暗区域的对比度将有所提升;而案例中经过伽玛变换处理的图像,整体亮度值偏高(或由于相机过曝)情况下的图像增强效果明显。这些图像处理方法能有效提升图像的质量,为我们提供更好地感官效果。
感谢在求学路上的同行者,不负遇见,勿忘初心。图像处理系列主要包括三部分,分别是:
祝大家新年快乐,虎年大吉,阖家幸福,万事如意,小珞珞给大家拜年了。亲情是真的很美,很治愈。希望小珞珞和他妈妈能开心每一天,全家人身体健康。小珞珞这小样子可爱极了,爱你们喔!
(By:娜璋之家 Eastmount 2022-03-09 夜于武汉 https://blog.csdn.net/Eastmount )
参考文献: