需求:
产生1-10之间的随机数([1,10]闭区间),将不重复的10个随机数放到容器中。
使用List类型容器实现
public class ListDemo {
public static void main(String[] args) {
List list = new ArrayList<>();
while(true){
//产生随机数
int num = (int)(Math.random()*10+1);
//判断当前元素在容器中是否存在
if(!list.contains(num)){
list.add(num);
}
//结束循环
if(list.size() == 10){
break;
}
}
for(Integer i:list){
System.out.println(i);
}
}
}
public class SetDemo {
public static void main(String[] args) {
Set set = new HashSet<>();
while(true){
int num = (int)(Math.random()*10+1);
//将元素添加容器中,由于Set类型容器是不允许有重复元素的,所以不需要判断。
set.add(num);
//结束循环
if(set.size() == 10){
break;
}
}
for(Integer i:set){
System.out.println(i);
}
}
}
Map接口定义了双例集合的存储特征,它并不是Collection接口的子接口。双例集合的存储特征是以key与value结构为单位进行存储。体现的是数学中的函数 y=f(x)感念。
Map与Collecton的区别:
Map接口中常用的方法表
方法 | 说明 |
---|---|
V put (K key,V value) | 把key与value添加到Map集合中 |
void putAll(Map m) | 从指定Map中将所有映射关系复制到此Map中 |
V remove (Object key) | 删除key对应的value |
V get(Object key) | 根据指定的key,获取对应的value |
boolean containsKey(Object key) | 判断容器中是否包含指定的key |
boolean containsValue(Object value) | 判断容器中是否包含指定的value |
Set keySet() | 获取Map集合中所有的key,存储到Set集合中 |
Set |
返回一个Set基于Map.Entry类型包含Map中所有映射。 |
void clear() | 删除Map中所有的映射 |
HashMap采用哈希算法实现,是Map接口最常用的实现类。 由于底层采用了哈希表存储数据,我们要求键不能重复,如果发生重复,新的键值对会替换旧的键值对。 HashMap在查找、删除、修改方面都有非常高的效率。
public class HashMapTest {
public static void main(String[] args) {
//实例化HashMap容器
Map map = new HashMap<>();
//添加元素
map.put("a","A");
map.put("b","B");
map.put("c","C");
map.put("a","D");
//获取容器中元素数量
int size = map.size();
System.out.println(size);
System.out.println("---------------");
//获取元素
//方式一
String v = map.get("a");
System.out.println(v);
System.out.println("---------------");
//方式二
Set keys = map.keySet();
for(String key:keys){
String v1 = map.get(key);
System.out.println(key+" ---- "+v1);
}
System.out.println("-------------------");
//方式三
//Map.Entry就是一个键值对 对象
Set> entrySet = map.entrySet();
for(Map.Entry entry:entrySet){
String key = entry.getKey();
String v2 = entry.getValue();
System.out.println(key+" ---------- "+v2);
}
System.out.println("--------------------");
//Map容器的并集操作
Map map2 = new HashMap<>();
map2.put("f","F");
map2.put("c","CC");
map.putAll(map2);
Set keys2 = map.keySet();
for(String key:keys2){
System.out.println("key: "+key+" Value: "+map.get(key));
}
System.out.println("---------------");
//删除元素
String v3 = map.remove("a");
System.out.println(v3);
Set keys3 = map.keySet();
for(String key:keys3){
System.out.println("key: "+key+" Value: "+map.get(key));
}
System.out.println("-------------------");
//判断Key是否存在
boolean b = map.containsKey("b");
System.out.println(b);
//判断Value是否存在
boolean cc = map.containsValue("CC");
System.out.println(cc);
}
}
HashTable类和HashMap用法几乎一样,底层实现几乎一样,只不过HashTable的方法添加了synchronized关键字确保线程同步检查,效率较低。
HashMap与HashTable的区别
- HashMap: 线程不安全,效率高。允许key或value为null
- HashTable: 线程安全,效率低。不允许key或value为null
底层存储介绍
HashMap底层实现采用了哈希表,这是一种非常重要的数据结构。对于我们以后理解很多技术都非常有帮助。
数据结构中由数组和链表来实现对数据的存储,他们各有特点。
(1) 数组:占用空间连续。 寻址容易,查询速度快。但是,增加和删除效率非常低。
(2) 链表:占用空间不连续。 寻址困难,查询速度慢。但是,增加和删除效率非常高。
那么,我们能不能结合数组和链表的优点(即查询快,增删效率也高)呢? 答案就是“哈希表”。 哈希表的本质就是“数组+链表”。
Oldlu建议
对于本章中频繁出现的“底层实现”讲解,建议学有余力的童鞋将它搞通。刚入门的童鞋如果觉得有难度,可以暂时跳过。入门期间,掌握如何使用即可,底层原理是扎实内功,便于大家应对一些大型企业的笔试面试。
jdk1.7和1.8的区别
第一个不同点
1.7链表头部添加元素 1.8链表尾部添加元素
第二个不同点
1.8会做链表到红黑树的转换,数组大于64,链表节点大于8转为红黑树
链表小于6,转为链表
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/**
* The number of key-value mappings contained in this map.
*/
transient int size;
/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
*/
transient Node[] table;
Node类
static class Node implements Map.Entry {
final int hash;
final K key;
V value;
Node next;
Node(int hash, K key, V value, Node next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry,?> e = (Map.Entry,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
在JDK1.8的HashMap中对于数组的初始化采用的是延迟初始化方式。通过resize方法实现初始化处理。resize方法既实现数组初始化,也实现数组扩容处理。
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node[] resize() {
Node[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node[] newTab = (Node[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode)e).split(this, newTab, j, oldCap);
else { // preserve order
Node loHead = null, loTail = null;
Node hiHead = null, hiTail = null;
Node next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
获得key对象的hashcode
首先调用key对象的hashcode()方法,获得key的hashcode值。
根据hashcode计算出hash值(要求在[0, 数组长度-1]区间)hashcode是一个整数,我们需要将它转化成[0, 数组长度-1]的范围。我们要求转化后的hash值尽量均匀地分布在[0,数组长度-1]这个区间,减少“hash冲突”
一种极端简单和低下的算法是:
hash值 = hashcode/hashcode;
也就是说,hash值总是1。意味着,键值对对象都会存储到数组索引1位置,这样就形成一个非常长的链表。相当于每存储一个对象都会发生“hash冲突”,HashMap也退化成了一个“链表”。
一种简单和常用的算法是(相除取余算法):
hash值 = hashcode%数组长度;
这种算法可以让hash值均匀的分布在[0,数组长度-1]的区间。但是,这种算法由于使用了“除法”,效率低下。JDK后来改进了算法。首先约定数组长度必须为2的整数幂,这样采用位运算即可实现取余的效果:hash值 = hashcode&(数组长度-1)。
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with key, or
* null if there was no mapping for key.
* (A null return can also indicate that the map
* previously associated null with key.)
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node[] tab; Node p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with key, or
* null if there was no mapping for key.
* (A null return can also indicate that the map
* previously associated null with key.)
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node[] tab; Node p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node[] resize() {
Node[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node[] newTab = (Node[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode)e).split(this, newTab, j, oldCap);
else { // preserve order
Node loHead = null, loTail = null;
Node hiHead = null, hiTail = null;
Node next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
TreeMap和HashMap同样实现了Map接口,所以,对于API的用法来说是没有区别的。HashMap效率高于TreeMap;TreeMap是可以对键进行排序的一种容器,在需要对键排序时可选用TreeMap。TreeMap底层是基于红黑树实现的。
在使用TreeMap时需要给定排序规则:
元素自身实现比较规则
public class Users implements Comparable{
private String username;
private int userage;
public Users(String username, int userage) {
this.username = username;
this.userage = userage;
}
public Users() {
}
@Override
public boolean equals(Object o) {
System.out.println("equals...");
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Users users = (Users) o;
if (userage != users.userage) return false;
return username != null ? username.equals(users.username) : users.username == null;
}
@Override
public int hashCode() {
int result = username != null ? username.hashCode() : 0;
result = 31 * result + userage;
return result;
}
public String getUsername() {
return username;
}
public void setUsername(String username) {
this.username = username;
}
public int getUserage() {
return userage;
}
public void setUserage(int userage) {
this.userage = userage;
}
@Override
public String toString() {
return "Users{" +
"username='" + username + '\'' +
", userage=" + userage +
'}';
}
//定义比较规则
//正数:大,负数:小,0:相等
@Override
public int compareTo(Users o) {
if(this.userage < o.getUserage()){
return 1;
}
if(this.userage == o.getUserage()){
return this.username.compareTo(o.getUsername());
}
return -1;
}
}
public class TreeMapTest {
public static void main(String[] args) {
//实例化TreeMap
Map map = new TreeMap<>();
Users u1 = new Users("oldlu",18);
Users u2 = new Users("admin",22);
Users u3 = new Users("sxt",22);
map.put(u1,"oldlu");
map.put(u2,"admin");
map.put(u3,"sxt");
Set keys = map.keySet();
for(Users key :keys){
System.out.println(key+" --------- "+map.get(key));
}
}
}
通过比较器实现比较规则
public class Student {
private String name;
private int age;
public Student(String name, int age) {
this.name = name;
this.age = age;
}
public Student() {
}
@Override
public String toString() {
return "Student{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Student student = (Student) o;
if (age != student.age) return false;
return name != null ? name.equals(student.name) : student.name == null;
}
@Override
public int hashCode() {
int result = name != null ? name.hashCode() : 0;
result = 31 * result + age;
return result;
}
}
public class StudentComparator implements Comparator {
//定义比较规则
@Override
public int compare(Student o1, Student o2) {
if(o1.getAge() > o2.getAge()){
return 1;
}
if(o1.getAge() == o2.getAge()){
return o1.getName().compareTo(o2.getName());
}
return -1;
}
}
public class TreeMapTest {
public static void main(String[] args) {
Map treeMap = new TreeMap<>(new StudentComparator());
Student s1 = new Student("oldlu",18);
Student s2 = new Student("admin",22);
Student s3 = new Student("sxt",22);
treeMap.put(s1,"oldlu");
treeMap.put(s2,"admin");
treeMap.put(s3,"sxt");
Set keys1 = treeMap.keySet();
for(Student key :keys1){
System.out.println(key+" ---- "+treeMap.get(key));
}
}
}
TreeMap的底层源码分析
TreeMap是红黑二叉树的典型实现。我们打开TreeMap的源码,发现里面有一行核心代码:
private transient Entry root = null;
root用来存储整个树的根节点。我们继续跟踪Entry(是TreeMap的内部类)的代码:
可以看到里面存储了本身数据、左节点、右节点、父节点、以及节点颜色。 TreeMap的put()/remove()方法大量使用了红黑树的理论。在本节课中,不再展开。需要了解更深入的,可以参考专门的数据结构书籍。
TreeMap和HashMap实现了同样的接口Map,因此,用法对于调用者来说没有区别。HashMap效率高于TreeMap;在需要排序的Map时才选用TreeMap。
Iterator迭代器接口介绍
Collection接口继承了Iterable接口,在该接口中包含一个名为iterator的抽象方法,所有实现了Collection接口的容器类对该方法做了具体实现。iterator方法会返回一个Iterator接口类型的迭代器对象,在该对象中包含了三个方法用于实现对单例容器的迭代处理。
Iterator接口定义了如下方法:
boolean hasNext();
//判断游标当前位置的下一个位置是否还有元素没有被遍历;Object next();
//返回游标当前位置的下一个元素并将游标移动到下一个位置;void remove();
//删除游标当前位置的元素,在执行完next后该操作只能执行一次;Iterator迭代器的使用
迭代List接口类型容器
public class IteratorListTest {
public static void main(String[] args) {
//实例化容器
List list = new ArrayList<>();
list.add("a");
list.add("b");
list.add("c");
//获取元素
//获取迭代器对象
Iterator iterator = list.iterator();
//方式一:在迭代器中,通过while循环获取元素
while(iterator.hasNext()){
String value = iterator.next();
System.out.println(value);
}
System.out.println("-------------------------------");
//方法二:在迭代器中,通过for循环获取元素
for(Iterator it = list.iterator();it.hasNext();){
String value = it.next();
System.out.println(value);
}
}
}
迭代Set接口类型容器
public class IteratorSetTest {
public static void main(String[] args) {
//实例化Set类型的容器
Set set = new HashSet<>();
set.add("a");
set.add("b");
set.add("c");
//方式一:通过while循环
//获取迭代器对象
Iterator iterator = set.iterator();
while(iterator.hasNext()){
String value = iterator.next();
System.out.println(value);
}
System.out.println("-------------------------");
//方式二:通过for循环
for(Iterator it = set.iterator();it.hasNext();){
String value = it.next();
System.out.println(value);
}
}
}
public class IteratorRemoveTest {
public static void main(String[] args) {
List list = new ArrayList<>();
list.add("a");
list.add("b");
list.add("c");
list.add("d");
Iterator iterator = list.iterator();
while(iterator.hasNext()){
//不要在一次循环中多次调用next方法。
String value = iterator.next();
iterator.remove();
}
System.out.println("----------------");
for(Iterator it = list.iterator();it.hasNext();){
System.out.println(it.next());
list.add("dddd");
}
}
}
遍历List方法一:普通for循环
for(int i=0;i
遍历List方法二:增强for循环(使用泛型!)
for (String temp : list) {
System.out.println(temp);
}
遍历List方法三:使用Iterator迭代器(1)
for(Iterator iter= list.iterator();iter.hasNext();){
String temp = (String)iter.next();
System.out.println(temp);
}
遍历List方法四:使用Iterator迭代器(2)
Iterator iter =list.iterator();
while(iter.hasNext()){
Object obj = iter.next();
iter.remove();//如果要遍历时,删除集合中的元素,建议使用这种方式!
System.out.println(obj);
}
遍历Set方法一:增强for循环
for(String temp:set){
System.out.println(temp);
}
遍历Set方法二:使用Iterator迭代器
for(Iterator iter = set.iterator();iter.hasNext();){
String temp = (String)iter.next();
System.out.println(temp);
}
遍历Map方法一:根据key获取value
Map maps = new HashMap();
Set keySet = maps.keySet();
for(Integer id : keySet){
System.out.println(maps.get(id).name);
}
遍历Map方法二:使用entrySet
Set> ss = maps.entrySet();
for (Iterator> iterator = ss.iterator(); iterator.hasNext();) {
Map.Entry e = iterator.next();
System.out.println(e.getKey()+"--"+e.getValue());
}
类 java.util.Collections 提供了对Set、List、Map进行排序、填充、查找元素的辅助方法。
方法名 | 说明 |
---|---|
void sort(List) | 对List容器内的元素排序,排序规则是升序。 |
void shuffle(List) | 对List容器内的元素进行随机排列 |
void reverse(List) | 对List容器内的元素进行逆续排列 |
void fill(List, Object) | 用一个特定的对象重写整个List容器 |
int binarySearch(List, Object) | 对于顺序的List容器,折半查找查找特定对象 |
Collections工具类的常用方法
public class CollectionsTest {
public static void main(String[] args) {
List list = new ArrayList<>();
list.add("c");
list.add("b");
list.add("a");
//对元素排序
Collections.sort(list);
for(String str:list){
System.out.println(str);
}
System.out.println("-------------------");
List list2 = new ArrayList<>();
Users u = new Users("oldlu",18);
Users u2 = new Users("sxt",22);
Users u3 = new Users("admin",22);
list2.add(u);
list2.add(u2);
list2.add(u3);
//对元素排序
Collections.sort(list2);
for(Users user:list2){
System.out.println(user);
}
System.out.println("-------------------");
List list3 = new ArrayList<>();
Student s = new Student("oldlu",18);
Student s1 = new Student("sxt",20);
Student s2 = new Student("admin",20);
list3.add(s);
list3.add(s1);
list3.add(s2);
Collections.sort(list3,new StudentComparator());
for(Student student:list3){
System.out.println(student);
}
System.out.println("-------------------");
List list4 = new ArrayList<>();
list4.add("a");
list4.add("b");
list4.add("c");
list4.add("d");
//洗牌
Collections.shuffle(list4);
for(String str:list4){
System.out.println(str);
}
}
}