YOLOv7 Tensorrt Python部署教程

B站教学视频

https://www.bilibili.com/video/BV1q34y1n7Bw/

Github仓库地址

https://github.com/Monday-Leo/YOLOv7_Tensorrt

Introduction

YOLOv7是YOLOv4的原班人马(Alexey Bochkovskiy在内)创造的目标检测模型,在保证精度的同时大幅降低了参数量,本仓库实现YOLOv7的tensorrt部署

YOLOv7 Tensorrt Python部署教程_第1张图片

Environment

  • Tensorrt 8.4.1.5
  • Cuda 10.2 Cudnn 8.4.1
  • onnx 1.12.0
  • onnx-simplifier 0.3.10
  • Torch 1.7.1

Benchmark

Model Size mAPtest 0.5:0.95 GTX1650 FP16(ms) GTX1650 FP32(ms)
YOLOv7-tiny 640 38.7 8.7 11.6
YOLOv7 640 51.4 27.2 47.5
YOLOv7-X 640 53.1 44.2 82.9

说明:此处FP16,fp32预测时间包含preprocess+inference+nms,测速方法为warmup10次,预测100次取平均值,并未使用trtexec测速,与官方测速不同;mAPval为原始模型精度,转换后精度未测试。

Quick Start

下载YOLOv7仓库。

git clone https://github.com/WongKinYiu/yolov7

将本仓库的EfficientNMS.pyexport_onnx.py复制到yolov7下,导出含有EfficientNMS的ONNX模型。

python export_onnx.py --weights ./weights/yolov7.pt

将生成的onnx模型复制到tensorrt/bin文件夹下,使用官方trtexec转化添加完EfficientNMS的onnx模型。FP32预测删除--fp16参数即可

trtexec --onnx=./yolov7.onnx --saveEngine=./yolov7_fp16.engine --fp16 --workspace=200

等待生成序列化模型后,修改本仓库infer.py模型路径和图片路径

trt_engine = TRT_engine("./trt_model/yolov7_fp16.engine")
img1 = cv2.imread("./pictures/zidane.jpg")
python infer.py

Reference

https://github.com/WongKinYiu/yolov7

https://github.com/ultralytics/yolov5

https://github.com/Linaom1214/tensorrt-python

https://github.com/triple-Mu

你可能感兴趣的:(python,深度学习,计算机视觉)