1、颜色直方图
#-------------------------------绘制颜色直方图------
import cv2
import numpy as np
import matplotlib.pyplot as plt
def plot_demo(image):
plt.hist(image.ravel(),256,[0,256])
plt.show("直方图")
def image_hist(image):
color=('blue','green','red')
for i,color in enumerate(color):
hist=cv2.calcHist([image],[i],None,[256],[0,256])
plt.plot(hist,color=color)
plt.show()
if __name__ == '__main__':
image=cv2.imread('../opencv-python-img/lena.png')
#plot_demo(image)
image_hist(image)
2、直方图均衡化+直方图比较
#------------------直方图均衡化,直方图比较-----------
import cv2
import numpy as np
import matplotlib.pyplot as plt
#直方图均衡化
def equalHist_demo(image):
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
dst=cv2.equalizeHist(gray)
#cv2.equalizeHist(img),将要均衡化的原图像【要求是灰度图像】作为参数传入,则返回值即为均衡化后的图像
cv2.imshow('equalHist_demo',dst)
# CLAHE 图像增强方法主要用在医学图像上面,增强图像的对比度的同时可以抑制噪声,是一种对比度受限情况下的自适应直方图均衡化算法
# 图像对比度指的是一幅图片中最亮的白和最暗的黑之间的反差大小。
def clahe_demo(image):
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
clahe=cv2.createCLAHE(clipLimit=5.0,tileGridSize=(8,8))
dst=clahe.apply(gray)
cv2.imshow('clahe_demo',dst)
def create_rgb_hist(image):
#创建RGB三通道直方图(直方图矩阵)
#16*16*16的意思是三通道的每通道有16个bins
h,w,c=image.shape
rgbHist=np.zeros([16*16*16,1],np.float32)
bsize=256/16
for row in range(h):
for col in range(w):
b=image[row,col,0]
g=image[row,col,1]
r=image[row,col,2]
#人为构建直方图矩阵的索引,该索引是通过每一个像素点的三通道值进行构建
index=np.int(b/bsize)*16*16+np.int(g/bsize)+np.int(r/bsize)
#该处形成的矩阵即为直方图矩阵
rgbHist[np.int(index),0]=rgbHist[np.int(index),0]+1
plt.ylim([0,10000])
plt.grid(color='r',linestyle='--',linewidth=0.5,alpha=0.3)
return rgbHist
#直方图比较
def hist_compare(image1,image2):
hist1=create_rgb_hist(image1)
hist2=create_rgb_hist(image2)
match1=cv2.compareHist(hist1,hist2,cv2.HISTCMP_BHATTACHARYYA)
match2=cv2.compareHist(hist1,hist2,cv2.HISTCMP_CORREL)
match3=cv2.compareHist(hist1,hist2,cv2.HISTCMP_CHISQR)
print('巴氏距离:%s,相关性:%s,卡方:%s'%(match1,match2,match3))
#巴氏距离比较(method=cv2.HISTCMP_BHATTACHARYYA)值越小,相关度越高[0,1]
#相关性(method=cv2.HISTCMP_CORREL)值越大,相关度越高,[0,1]
#卡方(method=cv2.HISTCMP_CHISQR),值越小,相关度越高,[0,inf)
if __name__ == '__main__':
#image=cv2.imread('../opencv-python-img/lena.png')
#cv2.imshow('origin_image',image)
#equalHist_demo(image)
#clahe_demo(image)
image1=cv2.imread('../opencv-python-img/lena.png')
image2=cv2.imread('../opencv-python-img/lenanoise.png')
plt.subplot(1,2,1)
plt.title('diff1')
plt.plot(create_rgb_hist(image1))
plt.subplot(1,2,2)
plt.title('diff2')
plt.plot(create_rgb_hist(image2))
plt.show()
hist_compare(image1,image2)
#cv2.waitKey(0)
3、直方图反向投影
#-----------------------------------------------直方图反向投影-------------------------------
import cv2
import numpy as np
import matplotlib.pyplot as plt
#1、HSV与RGB色彩空间
#2、反向投影
def back_projection_demo():
sample=cv2.imread('../opencv-python-img/lena.png')
target=cv2.imread('../opencv-python-img/lenanoise.png')
roi_hsv=cv2.cvtColor(sample,cv2.COLOR_BGR2HSV)
target_hsv=cv2.cvtColor(target,cv2.COLOR_BGR2HSV)
cv2.imshow('sample',sample)
cv2.imshow('target',target)
roiHist=cv2.calcHist([roi_hsv],[0,1],None,[32,32],[0,180,0,256])
cv2.normalize(roiHist,roiHist,0,255,cv2.NORM_MINMAX)
dst=cv2.calcBackProject([target_hsv],[0,1],roiHist,[0,180,0,256],1)
cv2.imshow('backProjectionDemo',dst)
#2D 直方图
def hist2d_demo(image):
hsv=cv2.cvtColor(image,cv2.COLOR_BGR2HSV)
hist=cv2.calcHist([image],[0,1,2],None,[8,8,8],[0,256,0,256,0,256])
cv2.imshow('hist2d',hist[1])
print(type(hist),hist.shape)
print(hist[:,:,0].shape)
plt.imshow(hist[:,:,0],interpolation='nearest')
plt.title('2D Histogram')
plt.show()
def hist3_2d_demo(image):
fig=plt.figure(figsize=(15,5))
ax=fig.add_subplot(131)
hist=cv2.calcHist([image],[0,1],None,[32,32],[0,256,0,256])
p=plt.imshow(hist,interpolation='nearest')
plt.colorbar(p)
ax=fig.add_subplot(132)
hist=cv2.calcHist([image],[1,2],None,[32,32],[0,256,0,256])
p=plt.imshow(hist,interpolation='nearest')
plt.colorbar(p)
ax=fig.add_subplot(133)
hist=cv2.calcHist([image],[0,2],None,[32,32],[0,256,0,256])
p=plt.imshow(hist,interpolation='nearest')
plt.colorbar(p)
print('2d Histogram shape:{}, with {} values'.format(hist.shape,hist.flatten().shape[0]))
hist=cv2.calcHist([image],[0,1,2],None,[8,8,8],[0,256,0,256,0,256])
print('3d Histogram shape:{}, with {} values'.format(hist.shape,hist.flatten().shape[0]))
plt.show()
if __name__ == '__main__':
src=cv2.imread('../opencv-python-img/lena.png')
#back_projection_demo()
#hist2d_demo(src)
hist3_2d_demo(src)
#plt.hist(src.ravel(),256,[0,256])
#plt.show()
cv2.waitKey(0)
4、模板匹配
#--------------------------模板匹配-------------------------
#模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域
#所以模板匹配首先需要一个模板图像T(给定的子图像)
#另外需要一个待检测的图像----源图像
#工作方法,在待检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大。
# 匹配方法:
# 差值平方和匹配:CV_TM_SQDIFF
# 标准化差值平方和匹配:CV_TM_SQDIFF_NORMED
# 相关匹配:CV_TM_CCORR
# 标准相关匹配:CV_TM_CCORR_NORMED
# 相关匹配:CV_TM_CCOEFF
# 标准相关匹配:CV_TM_CCOEFF_NORMED
import cv2
import numpy as np
def template_demo():
tpl=cv2.imread('../opencv-python-img/roi.jpg')
target=cv2.imread('../opencv-python-img/target.jpg')
methods=[cv2.TM_SQDIFF_NORMED,cv2.TM_CCORR_NORMED,cv2.TM_CCOEFF_NORMED]
th,tw=tpl.shape[:2]
print(methods)
for md in methods:
print(methods)
print('md',md)
result=cv2.matchTemplate(target,tpl,md)
min_val,max_val,min_loc,max_loc=cv2.minMaxLoc(result)
if md==cv2.TM_SQDIFF_NORMED:
tl=min_loc
else:
tl=max_loc
br=(tl[0]+tw,tl[1]+th)
cv2.rectangle(target,tl,br,(0,0,255),2)
#cv2.imshow('match-'+np.str(md),result)
cv2.imshow('match-'+np.str(md),target)
if __name__ == '__main__':
template_demo()
cv2.waitKey(0)