机器学习Sklearn总结2——分类算法

目录

一、转换器与估计器

二、分类算法

K-近邻算法

案例代码:

模型选择与调优

案例代码:

朴素贝叶斯算法:

朴素贝叶斯算法总结

案例代码:

决策树总结:

案例代码:

使用随机森林来实现:

随机森林总结

总结

 本次案例的代码集:


一、转换器与估计器

机器学习Sklearn总结2——分类算法_第1张图片

二、分类算法

K-近邻算法

机器学习Sklearn总结2——分类算法_第2张图片

KNN算法总结:

优点

简单、易于理解、易于实现、无需训练

缺点

        1)必须指定K值,K值选定不当则分类精度不能保证。

        2)懒惰算法,对测试样本分类时的计算量大,内存开销大

使用场景

        小数据场景,几千~几万条样本,具体使用看业务场景。

案例代码:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier


def knn_iris():
    """
    用KNN算法对iris数据进行分类
    :return:
    """
    # 1)获取数据
    iris = load_iris()

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6
                                                        )
    # 3) 特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4) KNN算法预估器
    estimator = KNeighborsClassifier(n_neighbors=3)
    estimator.fit(x_train, y_train)

    # 5) 模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)

    # 方法2: 计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    return None


if __name__ == '__main__':
    # 代码1:用KNN算法对iris数据进行分类
    knn_iris()

模型选择与调优

案例代码

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV

def knn_iris_gscv():
    """
    用KNN算法对iris数据进行分类,添加网格搜索和交叉验证
    :return:
    """
    # 1)获取数据
    iris = load_iris()

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6
                                                        )
    # 3) 特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4) KNN算法预估器
    estimator = KNeighborsClassifier()

    # 加入网格搜索和交叉验证
    # 参数准备
    param_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]}
    estimator = GridSearchCV(estimator, param_grid=param_dict, cv=10)
    estimator.fit(x_train, y_train)

    # 5) 模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)

    # 方法2: 计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    # 最佳参数结果:best_param_
    print("最佳参数:\n", estimator.best_params_)
    # 最佳结果:best_score_
    print("最佳结果:\n", estimator.best_score_)
    # 最佳估计器:best_estimator_
    print("最佳估计器:\n", estimator.best_estimator_)
    # 交叉验证结果: cv_results_
    print("交叉验证结果:\n", estimator.cv_results_)

    return None


if __name__ == '__main__':
    # 代码2: 用KNN算法对iris数据进行分类,添加网格搜索和交叉验证
    knn_iris_gscv()

facebook数据挖掘案例:

机器学习Sklearn总结2——分类算法_第3张图片

案例代码:

import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler


def predict_data():
    """
    数据预处理
    :return:
    """
    # 1)读取数据
    data = pd.read_csv("./train.csv")

    # 2)基本数据处理
    # 缩小范围
    data = data.query("x<2.5 & x>2 & y<1.5 & y>1.0")

    # 处理时间特征
    time_value = pd.to_datatime(data["time"], unit="s")
    date = pd.DatetimeIndex(time_value)
    data.loc[:, "day"] = date.day
    data.loc[:, "weekday"] = date.weekday
    data["hour"] = data.hour

    # 3)过滤签到次数少的地点
    data.groupby("place_id").count()
    place_count = data.groupby("place_id").count()["row_id"]
    data_final = data[data['place_id'].isin(place_count[place_count > 3].index.vlaues)]

    # 筛选特征值和目标值
    x = data_final[["x", "y", "accuracy", "day", "weekday", "hour"]]
    y = data_final["place_id"]

    # 数据集划分
    # 机器学习
    x_train, x_test, y_train, y_test = train_test_split(x, y)
    # 3) 特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4) KNN算法预估器
    estimator = KNeighborsClassifier()

    # 加入网格搜索和交叉验证
    # 参数准备
    param_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]}
    estimator = GridSearchCV(estimator, param_grid=param_dict, cv=3)
    estimator.fit(x_train, y_train)

    # 5) 模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)

    # 方法2: 计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    # 最佳参数结果:best_param_
    print("最佳参数:\n", estimator.best_params_)
    # 最佳结果:best_score_
    print("最佳结果:\n", estimator.best_score_)
    # 最佳估计器:best_estimator_
    print("最佳估计器:\n", estimator.best_estimator_)
    # 交叉验证结果: cv_results_
    print("交叉验证结果:\n", estimator.cv_results_)

    return None


if __name__ == '__main__':
    predict_data()

朴素贝叶斯算法:

案例代码

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB


def nb_news():
    """
    用朴素贝叶斯算法对新闻进行分类
    :return:
    """
    # 1)获取数据
    news = fetch_20newsgroups(subset="all")

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(news.data, news.target)

    # 3)特征工程文本特征抽取-tfidf
    transfer = TfidfVectorizer()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4)朴素贝叶斯算法预估器流程
    estimator = MultinomialNB()
    estimator.fit(x_train, y_train)

    # 5)模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)

    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    return None


if __name__ == '__main__':
    # 代码3:用朴素贝叶斯算法对新闻进行分类
    nb_news()

朴素贝叶斯算法总结

优点: 

        对缺失数据不太敏感,算法比较简单,常用于文本分类。

        分类准确度高,速度快。

缺点:

        由于使用样本独立的假设,所以如果特征之间关联,预测效果不明显。

决策树

案例代码:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier, export_graphviz

def decision_iris():
    """
    用决策树对iris数据进行分类
    :return:
    """
    # 1)获取数据集
    iris = load_iris()

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)

    # 3)决策树预估器
    estimator = DecisionTreeClassifier(criterion="entropy")
    estimator.fit(x_train, y_train)

    # 4)模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)

    # 方法2: 计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    # 可视化决策树
    export_graphviz(estimator, out_file="iris_tree.dot", feature_names=iris.feature_names)

    return None


if __name__ == '__main__':
    # 代码4:用决策树对iris数据进行分类
    decision_iris()

决策树支持可视化:

.dot文件转换为可视化图像的网页:Graphviz Online

决策树总结:

优点:

        可视化——解释性强

缺点:

        容易产生过拟合,这时候使用随机森林效果会好些

决策树的实验项目——titanic数据的案例

案例代码:

import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, export_graphviz


def decision_titanic():
    # 1、获取数据
    titanic = pd.read_csv("./titanic.csv")
    print(titanic)

    # 筛选特征值和目标值
    x = titanic[["pclass", "age", "sex"]]
    y = titanic["survived"]

    # 2、数据处理
    # 1)缺失值处理
    x['age'].fillna(x["age"].mean(), inplace=True)

    # 2)转换成字典
    x = x.to_dict(orient="records")

    # 3、数据集划分
    x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)

    transfer = DictVectorizer()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 3)决策树预估器
    estimator = DecisionTreeClassifier(criterion="entropy", max_depth=8)
    estimator.fit(x_train, y_train)

    # 4)模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)

    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    # 可视化决策树
    export_graphviz(estimator, out_file="titanic_tree.dot", feature_names=transfer.get_feature_names())


if __name__ == '__main__':
    decision_titanic()

使用随机森林来实现:

import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV


def decision_titanic():
    # 1、获取数据
    titanic = pd.read_csv("./titanic.csv")
    print(titanic)

    # 筛选特征值和目标值
    x = titanic[["pclass", "age", "sex"]]
    y = titanic["survived"]

    # 2、数据处理
    # 1)缺失值处理
    x['age'].fillna(x["age"].mean(), inplace=True)

    # 2)转换成字典
    x = x.to_dict(orient="records")

    # 3、数据集划分
    x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)

    transfer = DictVectorizer()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 3)随机森林预估器
    estimator = RandomForestClassifier()
    # 加入网格搜索与交叉验证
    # 参数准备
    param_dict = {"n_estimators": [120, 200, 300, 500, 800, 1200],
                  "max_depth": [5, 8, 15, 25, 30]}
    estimator = GridSearchCV(estimator, param_grid=param_dict, cv=3)
    estimator.fit(x_train, y_train)

    # 4)模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)

    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    # 可视化决策树
    export_graphviz(estimator, out_file="titanic_tree.dot", feature_names=transfer.get_feature_names())


if __name__ == '__main__':
    decision_titanic()

随机森林总结

优点: 

        能够有效的运行在大数据集上

        处理具有高维特征的输入样本,而且不需要降维。

总结

机器学习Sklearn总结2——分类算法_第4张图片

机器学习Sklearn总结2——分类算法_第5张图片 

 本次案例的代码集:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier, export_graphviz


def knn_iris():
    """
    用KNN算法对iris数据进行分类
    :return:
    """
    # 1)获取数据
    iris = load_iris()

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6
                                                        )
    # 3) 特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4) KNN算法预估器
    estimator = KNeighborsClassifier(n_neighbors=3)
    estimator.fit(x_train, y_train)

    # 5) 模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)

    # 方法2: 计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    return None


def knn_iris_gscv():
    """
    用KNN算法对iris数据进行分类,添加网格搜索和交叉验证
    :return:
    """
    # 1)获取数据
    iris = load_iris()

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6
                                                        )
    # 3) 特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4) KNN算法预估器
    estimator = KNeighborsClassifier()

    # 加入网格搜索和交叉验证
    # 参数准备
    param_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]}
    estimator = GridSearchCV(estimator, param_grid=param_dict, cv=10)
    estimator.fit(x_train, y_train)

    # 5) 模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)

    # 方法2: 计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    # 最佳参数结果:best_param_
    print("最佳参数:\n", estimator.best_params_)
    # 最佳结果:best_score_
    print("最佳结果:\n", estimator.best_score_)
    # 最佳估计器:best_estimator_
    print("最佳估计器:\n", estimator.best_estimator_)
    # 交叉验证结果: cv_results_
    print("交叉验证结果:\n", estimator.cv_results_)

    return None


def nb_news():
    """
    用朴素贝叶斯算法对新闻进行分类
    :return:
    """
    # 1)获取数据
    news = fetch_20newsgroups(subset="all")

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(news.data, news.target)

    # 3)特征工程文本特征抽取-tfidf
    transfer = TfidfVectorizer()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4)朴素贝叶斯算法预估器流程
    estimator = MultinomialNB()
    estimator.fit(x_train, y_train)

    # 5)模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)

    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    return None


def decision_iris():
    """
    用决策树对iris数据进行分类
    :return:
    """
    # 1)获取数据集
    iris = load_iris()

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)

    # 3)决策树预估器
    estimator = DecisionTreeClassifier(criterion="entropy")
    estimator.fit(x_train, y_train)

    # 4)模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)

    # 方法2: 计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    # 可视化决策树
    export_graphviz(estimator, out_file="iris_tree.dot", feature_names=iris.feature_names)

    return None


if __name__ == '__main__':
    # 代码1:用KNN算法对iris数据进行分类
    # knn_iris()
    # 代码2: 用KNN算法对iris数据进行分类,添加网格搜索和交叉验证
    # knn_iris_gscv()
    # 代码3:用朴素贝叶斯算法对新闻进行分类
    # nb_news()
    # 代码4:用决策树对iris数据进行分类
    decision_iris()

你可能感兴趣的:(数据挖掘,机器学习,机器学习,sklearn,分类,算法,python)