《机器学习》李宏毅P13

《机器学习》李宏毅P13

  • 深度学习
    • 深度学习发展趋势
    • 深度学习的三个步骤
      • Step1:神经网络
        • 完全连接前馈神经网络
      • Step2: 模型评估
      • Step3:选择最优函数
        • 反向传播

深度学习

深度学习发展趋势

1958: Perceptron (linear model)
1969: Perceptron has limitation
1980s: Multi-layer perceptron
    Do not have significant difference from DNN today
1986: Backpropagation
    Usually more than 3 hidden layers is not helpful
1989: 1 hidden layer is “good enough”, why deep?
2006: RBM initialization (breakthrough)
2009: GPU
2011: Start to be popular in speech recognition
2012: win ILSVRC image competition 感知机(Perceptron)非常像我们的逻辑回归(Logistics Regression)只不过是没有sigmoid激活函数。09年的GPU的发展是很关键的,使用GPU矩阵运算节省了很多的时间。

深度学习的三个步骤

  • Step1:神经网络(Neural network)
  • Step2:模型评估(Goodness of function)
  • Step3:选择最优函数(Pick best function)

Step1:神经网络

神经网络(Neural network)里面的节点,类似神经元。

神经网络也可以有很多不同的连接方式,这样就会产生不同的结构(structure)在这个神经网络里面,有很多逻辑回归函数,其中每个逻辑回归都有自己的权重和自己的偏差,这些权重和偏差就是参数。 那这些神经元都是通过什么方式连接的呢?其实连接方式都是你手动去设计的。

完全连接前馈神经网络

概念:前馈(feedforward)也可以称为前向,从信号流向来理解就是输入信号进入网络后,信号流动是单向的,即信号从前一层流向后一层,一直到输出层,其中任意两层之间的连接并没有反馈(feedback),亦即信号没有从后一层又返回到前一层。

一个神经网络如果权重和偏差都知道的话就可以看成一个函数,他的输入是一个向量,对应的输出也是一个向量。不论是做回归模型(linear model)还是逻辑回归(logistics regression)都是定义了一个函数集(function set)。我们可以给上面的结构的参数设置为不同的数,就是不同的函数(function)。这些可能的函数(function)结合起来就是一个函数集(function set)。这个时候你的函数集(function set)是比较大的,是以前的回归模型(linear model)等没有办法包含的函数(function),所以说深度学习(Deep Learning)能表达出以前所不能表达的情况。

随着层数变多,错误率降低,随之运算量增大,通常都是超过亿万级的计算。对于这样复杂的结构,我们一定不会一个一个的计算,对于亿万级的计算,使用loop循环效率很低。

这里我们就引入矩阵计算(Matrix Operation)能使得我们的运算的速度以及效率高很多:

矩阵计算

其中sigmoid更一般的来说是激活函数(activation function),现在已经很少用sigmoid来当做激活函数。

把隐藏层通过特征提取来替代原来的特征工程,这样在最后一个隐藏层输出的就是一组新的特征(相当于黑箱操作)而对于输出层,其实是把前面的隐藏层的输出当做输入(经过特征提取得到的一组最好的特征)然后通过一个多分类器(可以是softmax函数)得到最后的输出y。
示例:手写数字识别

举一个手写数字体识别的例子: 输入:一个16*16=256维的向量,每个pixel对应一个dimension,有颜色用(ink)用1表示,没有颜色(no ink)用0表示 输出:10个维度,每个维度代表一个数字的置信度。

从输出结果来看,每一个维度对应输出一个数字,是数字2的概率为0.7的概率最大。说明这张图片是2的可能性就是最大的

在这个问题中,唯一需要的就是一个函数,输入是256维的向量,输出是10维的向量,我们所需要求的函数就是神经网络这个函数

从上图看神经网络的结构决定了函数集(function set),所以说网络结构(network structured)很关键。

Step2: 模型评估

对于模型的评估,我们一般采用损失函数来反应模型的好差,所以对于神经网络来说,我们采用交叉熵(cross entropy)函数来对yyy和y​\hat{y}​y​​的损失进行计算,接下来我们就是调整参数,让交叉熵越小越好。

对于损失,我们不单单要计算一笔数据的,而是要计算整体所有训练数据的损失,然后把所有的训练数据的损失都加起来,得到一个总体损失L。接下来就是在function set里面找到一组函数能最小化这个总体损失L,或者是找一组神经网络的参数θ,来最小化总体损失L

Step3:选择最优函数

具体流程:θ是一组包含权重和偏差的参数集合,随机找一个初试值,接下来计算一下每个参数对应偏微分,得到的一个偏微分的集合∇L就是梯度,有了这些偏微分,我们就可以不断更新梯度得到新的参数,这样不断反复进行,就能得到一组最好的参数使得损失函数的值最小

反向传播

在神经网络中计算损失最好的方法就是反向传播,我们可以用很多框架来进行计算损失,比如说TensorFlow,theano,Pytorch等等

损失函数(Loss function)是定义在单个训练样本上的,也就是就算一个样本的误差,比如我们想要分类,就是预测的类别和实际类别的区别,是一个样本的,用L表示。

代价函数(Cost function)是定义在整个训练集上面的,也就是所有样本的误差的总和的平均,也就是损失函数的总和的平均,有没有这个平均其实不会影响最后的参数的求解结果。

总体损失函数(Total loss function)是定义在整个训练集上面的,也就是所有样本的误差的总和。也就是平时我们反向传播需要最小化的值。

对于L(θ)就是所有ln的损失之和,所以如果要算每个L(θ)的偏微分,我们只要算每个ln的偏微分,再把所有ln偏微分的结果加起来就是L(θ)的偏微分,所以等下我们只计算每个​ln​的偏微分。 我们先在整个神经网络(Neural network)中抽取出一小部分的神经(Neuron)去看(也就是红色标注的地方):
《机器学习》李宏毅P13_第1张图片

你可能感兴趣的:(机器学习—李宏毅,机器学习)