kafka Consumer 消费者使用多线程并发执行,并保证顺序消费, 第一种使用纯线程方式、第二种使用Executors线程池

网上搜索kafka消费者通过多线程进行顺序消费的内容都不太理想,或者太过复杂,所以自己写了几个demo,供大家参考指正。

需求内容

        单个消费者,每秒需要处理1000条数据,每条数据的处理时间为500ms,相同accNum(客户账号)的数据需要保证消费的顺序。

注意点

1、如果1秒钟生产1000条数据,消费者处理时,每条数据需要500毫秒,则消费者每次拉取数据的条数最好能控制在500条以上,这样1秒内的数据可以拉取两次,每次使用500个线程进行处理,每次耗时500ms,

        2*500ms=1秒,基本可以保证1000条数据能够在1秒内处理完成。

如果消费者每100ms拉取一次,每次拉取100条数据,消费者使用100个线程处理这100条数据,耗时500ms,第二次再拉取100条,耗时500ms...这样处理完1秒内的1000条数据将一共需要

        10次*500ms=5秒钟,出现较大延迟。

        同时,还要注意,一批数据中存在相同的accNum(客户账号)的情况,如果存在2条相同的accNum,因为需要顺序执行,一条执行需要500ms,两条顺序执行完成将花费1秒,这批数据的整体完成时间将变为1秒。

        注意这三个参数的调整:

        // fetch.max.bytes:一次拉取的最小可返回数据量:1Bety
        props.put(ConsumerConfig.FETCH_MIN_BYTES_CONFIG, 100 * 1024);
        // fetch.max.wait.ms:一次拉取的最大等待时间:500ms
        props.put(ConsumerConfig.FETCH_MAX_WAIT_MS_CONFIG, 500);
        // max.poll.records: 一次拉取的最大条数
        props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 2000);

        注意消费者的拉取延迟时间:

        tKafkaConsumer.poll(500);

2、每批次数据处理时,创建的线程数,会根据每次拉取的数据条数自动调整,最大线程数为消费者每次允许拉取的最大数据条数。这样系统可以根据数据量大小自动调整创建的线程数,线程池中的空闲线程可以在一定时间后自动释放。可以保证不同accNum(客户账号)的数据每次都分配一个线程单独处理,从而保证处理的时间(500ms)。

第一种使用纯线程方式(Thread+Callable+FutureTask)

因为每次处理都创建新的线程,造成大量线程同时创建和销毁,线程数波动剧烈,GC频繁,系统各项指标均不平稳。
package com.autoee.demo.kafka.main;

import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.LoggerContext;
import cn.hutool.core.date.DateUtil;
import cn.hutool.core.date.TimeInterval;
import cn.hutool.core.map.MapUtil;
import cn.hutool.json.JSONUtil;
import com.autoee.demo.riskmonitor.BusiDataEntity;
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.*;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * Title: 
* Desc:
* Date: 2022-8-19
* @author Double * @version 1.0.0 */ public class KafkaConsumerMutiThreadsTest3_Callable_HashMap { private static final Logger logger = LoggerFactory.getLogger(KafkaConsumerMutiThreadsTest3_Callable_HashMap.class); // 设置main方法执行时的日志输出级别 static { LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory(); List loggerList = loggerContext.getLoggerList(); loggerList.forEach(logger -> { logger.setLevel(Level.INFO); }); } // 需求内容:单个消费者,每秒需要处理1000条数据,每条数据的处理时间为500ms,相同accNum的数据需要保证消费的顺序 // 测试极限情况:数据已存在大量积压,启动消费者进行消费 // 每次拉取都达到设置的单次可以拉取的最大条数:2000条 public static void main(String[] args) throws InterruptedException { Properties props = new Properties(); // bootstrap.servers:kafka集群地址 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); // 消费者组id props.put("group.id", "test_consumer_group"); //消费者组 // key.deserializer:key的反序列化器 props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // value.deserializer:value的反序列化器 props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // fetch.max.bytes:一次拉取的最小可返回数据量:1Bety props.put(ConsumerConfig.FETCH_MIN_BYTES_CONFIG, 100 * 1024); // fetch.max.bytes:一次拉取的最大数据量:50M props.put(ConsumerConfig.FETCH_MAX_BYTES_CONFIG, 50 * 1024 * 1024); // fetch.max.wait.ms:一次拉取的最大等待时间:500ms props.put(ConsumerConfig.FETCH_MAX_WAIT_MS_CONFIG, 500); // max.poll.records: 一次拉取的最大条数 props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 2000); // max.partition.fetch.bytes:一次拉取时,每个分区最大拉取数据量,默认1M props.put(ConsumerConfig.MAX_PARTITION_FETCH_BYTES_CONFIG, 1 * 1024 * 1024); // auto.offset.reset:当 Kafka 中没有初始偏移量或当前偏移量在服务器中不存在 (如,数据被删除了)时,自动设置开始消费的偏移量位置,默认latest。 // earliest:自动重置偏移量到最早的偏移量(从头开始消费)。 // latest:默认,自动重置偏移量为最新的偏移量(从最新的接收到的数据开始消费)。 // none:如果消费组原来的(previous)偏移量不存在,则向消费者抛异常。 anything:向消费者抛异常。 props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); // enable.auto.commit:是否允许自动提交offset,默认是。 props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false); // auto.commit.interval.ms:自动提交offset的时间间隔,默认5秒。 props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, 5000); // heartbeat.interval.ms:消费者心跳检测时间间隔,默认3秒。 props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 3000); // session.timeout.ms:session过期时间,默认10秒。 props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10000); // max.poll.interval.ms:一批次数据最大可以执行时间,默认5分钟。 props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 300000); // partition.assignment.strategy:分区分配策略,默认5分钟。 props.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, RangeAssignor.class.getName()); KafkaConsumer tKafkaConsumer = new KafkaConsumer(props); tKafkaConsumer.subscribe(Arrays.asList("riskMoniterTopic")); HashMap> hashMap; while (true) { TimeInterval timer = DateUtil.timer(); logger.info("[开始]-consumer拉取数据"); ConsumerRecords records = tKafkaConsumer.poll(500); int dataCount = records.count(); AtomicInteger tAtomicInteger = new AtomicInteger(); logger.info("[完成]-consumer拉取数据-条数=[{}]-耗时=[{}]", dataCount, timer.intervalMs()); // 拉取的数据条数大于0时,才进行处理操作 timer = DateUtil.timer(); if (dataCount > 0) { // 初始化hashMap:容量可以设置为拉取数据条数的1倍,或者2倍,2倍更加分散 // 消费者参数中设置一次拉取的最大条数为2000,基本不会超过该值。 // hashMap的hash碰撞概率较低,2000条数据,分布到4000容量的hashMap中时,基本不会出现碰撞,只有相同的key会在一起,导致整体执行时间为相同多个key顺序执行的时间 // [线程执行完成]消费者线程:consumer-thread-VV0039-已处理数据数量=3-已处理的所有客户账号=VV0039,VV0039,VV0039, // [线程执行完成]消费者线程:consumer-thread-AG0097-已处理数据数量=2-已处理的所有客户账号=AG0097,AG0097, // [线程执行完成]消费者线程:consumer-thread-ID0045-已处理数据数量=1-已处理的所有客户账号=ID0045, int arrListCapacity = dataCount * 2; hashMap = new HashMap<>(arrListCapacity); // 将拉取的数据按客户号码分散到HashMap中 for (ConsumerRecord record : records) { Object value = record.value(); String jsonStr = JSONUtil.toJsonStr(value); // logger.info("[获取]-传入报文=[{}]", jsonStr); BusiDataEntity busiDataEntity = JSONUtil.toBean(jsonStr, BusiDataEntity.class); String accNum = busiDataEntity.getAccNum(); if (hashMap.containsKey(accNum)) { hashMap.get(accNum).add(busiDataEntity); } else { List newList = new ArrayList<>(); newList.add(busiDataEntity); hashMap.put(accNum, newList); } } ArrayList> tFutureTaskArrayList = new ArrayList<>(dataCount); // 循环hashMap,每个value开启一个线程循环处理该List中的全部数据,保证数据处理的顺序 int num = 0; hashMap.forEach((k, v) -> { List busiDataEntities = v; String threadName = ""; if (busiDataEntities.size() > 0) { threadName = "consumer-thread-" + k; // 使用Callable执行一组数据 FutureTask futureTask = new FutureTask<>(new Callable() { @Override public String call() { String threadName = Thread.currentThread().getName(); // logger.info("[获取]-消费者线程:{}-获取到待处理数据数量:{}", threadName, busiDataEntities.size()); String allAccNum = ""; for (BusiDataEntity busiDataEntity : busiDataEntities) { allAccNum = allAccNum + busiDataEntity.getAccNum() + ","; try { // 模拟业务处理时间,默认500ms Thread.sleep(500); } catch (InterruptedException e) { e.printStackTrace(); } } return "消费者线程:" + threadName + "-已处理数据数量=" + busiDataEntities.size() + "-已处理的所有客户账号=" + allAccNum; } }); // 启动一个线程执行一组数据 new Thread(futureTask, threadName).start(); // 将每个线程的futureTask都放入同一个ArrayList中 tFutureTaskArrayList.add(futureTask); } }); // 循环tFutureTaskArrayList,检查所有futureTask是否都已经返回,没返回的阻塞等待,等都返回后证明所有线程都执行完成,提交offset // 因为每次处理都创建新的线程,大量线程同时创建和销毁,线程数波动剧烈,考虑通过线程池进行优化 for (int i = 0; i < tFutureTaskArrayList.size(); i++) { try { String returnStr = tFutureTaskArrayList.get(i).get(); logger.info("[线程执行完成]" + returnStr); } catch (ExecutionException e) { e.printStackTrace(); } } } //同步提交offset // tKafkaConsumer.commitSync(); //异步提交 tKafkaConsumer.commitAsync(new OffsetCommitCallback() { @Override public void onComplete(Map offsets, Exception exception) { if (exception != null) { logger.error("[失败]-提交offset失败!" + offsets); } else { logger.info("[成功]-提交offset成功!"); } } }); logger.info("【完成处理数据】-条数=[{}]-耗时=[{}]", dataCount, timer.intervalMs()); } } }

kafka Consumer 消费者使用多线程并发执行,并保证顺序消费, 第一种使用纯线程方式、第二种使用Executors线程池_第1张图片

测试结果:


    // [开始]-consumer拉取数据
    // [完成]-consumer拉取数据-条数=[2000]-耗时=[5]
    // [成功]-提交offset成功!
    // 【完成处理数据】-条数=[2000]-耗时=[1731]
    // [开始]-consumer拉取数据
    // [完成]-consumer拉取数据-条数=[2000]-耗时=[4]
    // [成功]-提交offset成功!
    // 【完成处理数据】-条数=[2000]-耗时=[1678]
    // [开始]-consumer拉取数据
    // [完成]-consumer拉取数据-条数=[2000]-耗时=[23]
    // [成功]-提交offset成功!
    // 【完成处理数据】-条数=[2000]-耗时=[1637]

    // 测试结果:2000条可以在2秒处理完成,则可以保证1000条时可以在1秒能处理完成,满足需求内容。
    // 因为每次处理都创建新的线程,造成大量线程同时创建和销毁,线程数波动剧烈,GC频繁,系统各项指标均不平稳。

第二种使用Executors线程池(Executors+Callable+FutureTask)

通过线程池进行处理,线程数一直保持在2000个左右。
package com.autoee.demo.kafka.main;

import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.LoggerContext;
import cn.hutool.core.date.DateUtil;
import cn.hutool.core.date.TimeInterval;
import cn.hutool.json.JSONUtil;
import com.autoee.demo.riskmonitor.BusiDataEntity;
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * Title: 
* Desc:
* Date: 2022-8-19
* @author Double * @version 1.0.0 */ public class KafkaConsumerMutiThreadsTest4_Executors_HashMap { private static final Logger logger = LoggerFactory.getLogger(KafkaConsumerMutiThreadsTest4_Executors_HashMap.class); // 设置main方法执行时的日志输出级别 static { LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory(); List loggerList = loggerContext.getLoggerList(); loggerList.forEach(logger -> { logger.setLevel(Level.INFO); }); } // 需求内容:单个消费者,每秒需要处理1000条数据,每条数据的处理时间为500ms,相同accNum的数据需要保证消费的顺序 // 测试极限情况:数据已存在大量积压,启动消费者进行消费 // 每次拉取都达到设置的单次可以拉取的最大条数:2000条 public static void main(String[] args) throws InterruptedException { Properties props = new Properties(); // bootstrap.servers:kafka集群地址 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); // 消费者组id props.put("group.id", "test_consumer_group"); //消费者组 // key.deserializer:key的反序列化器 props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // value.deserializer:value的反序列化器 props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // fetch.max.bytes:一次拉取的最小可返回数据量:1Bety props.put(ConsumerConfig.FETCH_MIN_BYTES_CONFIG, 100 * 1024); // fetch.max.bytes:一次拉取的最大数据量:50M props.put(ConsumerConfig.FETCH_MAX_BYTES_CONFIG, 50 * 1024 * 1024); // fetch.max.wait.ms:一次拉取的最大等待时间:500ms props.put(ConsumerConfig.FETCH_MAX_WAIT_MS_CONFIG, 500); // max.poll.records: 一次拉取的最大条数 props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 2000); // max.partition.fetch.bytes:一次拉取时,每个分区最大拉取数据量,默认1M props.put(ConsumerConfig.MAX_PARTITION_FETCH_BYTES_CONFIG, 1 * 1024 * 1024); // auto.offset.reset:当 Kafka 中没有初始偏移量或当前偏移量在服务器中不存在 (如,数据被删除了)时,自动设置开始消费的偏移量位置,默认latest。 // earliest:自动重置偏移量到最早的偏移量(从头开始消费)。 // latest:默认,自动重置偏移量为最新的偏移量(从最新的接收到的数据开始消费)。 // none:如果消费组原来的(previous)偏移量不存在,则向消费者抛异常。 anything:向消费者抛异常。 props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); // enable.auto.commit:是否允许自动提交offset,默认是。 props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false); // auto.commit.interval.ms:自动提交offset的时间间隔,默认5秒。 props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, 5000); // heartbeat.interval.ms:消费者心跳检测时间间隔,默认3秒。 props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 3000); // session.timeout.ms:session过期时间,默认10秒。 props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10000); // max.poll.interval.ms:一批次数据最大可以执行时间,默认5分钟。 props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 300000); // partition.assignment.strategy:分区分配策略,默认5分钟。 props.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, RangeAssignor.class.getName()); KafkaConsumer tKafkaConsumer = new KafkaConsumer(props); tKafkaConsumer.subscribe(Arrays.asList("riskMoniterTopic")); // 使用Executors中的CachedThreadPool,初始核心线程数为0,最大线程数为无限大,线程最大空闲时间为60秒 // corePoolSize=0 // maximumPoolSize=Integer.MAX_VALUE,即2147483647,基本属于无界。 // keepAliveTime=60秒 // 工作队列使用没有容量的 SynchronousQueue,来一个任务处理一个任务,不进行缓存。如果提交任务速度高于线程池中线程处理任务的速度,则会不断创建新线程。极端情况下会创建过多的线程,耗尽 CPU 和内存资源。 // 可以自定义线程池进行优化 ExecutorService executorService = Executors.newCachedThreadPool(); HashMap> busiDataHashMap; while (true) { TimeInterval timer = DateUtil.timer(); logger.info("[开始]-consumer拉取数据"); ConsumerRecords records = tKafkaConsumer.poll(500); int dataCount = records.count(); AtomicInteger tAtomicInteger = new AtomicInteger(); logger.info("[完成]-consumer拉取数据-条数=[{}]-耗时=[{}]", dataCount, timer.intervalMs()); // 拉取的数据条数大于0时,才进行处理操作 timer = DateUtil.timer(); if (dataCount > 0) { // 初始化hashMap:容量可以设置为拉取数据条数的1倍,或者2倍,2倍更加分散 // 消费者参数中设置一次拉取的最大条数为2000,基本不会超过该值。 // hashMap的hash碰撞概率较低,2000条数据,分布到4000容量的hashMap中时,基本不会出现碰撞,只有相同的key会在一起,导致整体执行时间为相同多个key顺序执行的时间 // [线程执行完成]消费者线程:pool-1-thread-1898-已处理数据数量=3-已处理的所有客户账号=GW0032,GW0032,GW0032, // [线程执行完成]消费者线程:pool-1-thread-1193-已处理数据数量=2-已处理的所有客户账号=KE0055,KE0055, // [线程执行完成]消费者线程:pool-1-thread-1187-已处理数据数量=2-已处理的所有客户账号=0E0005,0E0005, int capacity = dataCount * 2; busiDataHashMap = new HashMap<>(capacity); // 将拉取的数据按客户号码分散到HashMap中 for (ConsumerRecord record : records) { Object value = record.value(); String jsonStr = JSONUtil.toJsonStr(value); // logger.info("[获取]-传入报文=[{}]", jsonStr); BusiDataEntity busiDataEntity = JSONUtil.toBean(jsonStr, BusiDataEntity.class); String accNum = busiDataEntity.getAccNum(); if (busiDataHashMap.containsKey(accNum)) { busiDataHashMap.get(accNum).add(busiDataEntity); } else { List newList = new ArrayList<>(); newList.add(busiDataEntity); busiDataHashMap.put(accNum, newList); } } ArrayList> tFutureTaskArrayList = new ArrayList<>(dataCount); // 循环hashMap,每个value开启一个线程循环处理该List中的全部数据,保证数据处理的顺序 int num = 0; busiDataHashMap.forEach((k, v) -> { List busiDataEntities = v; String threadName = ""; if (busiDataEntities.size() > 0) { threadName = k; // 使用Callable执行同一个Key下的一组数据 FutureTask futureTask = new FutureTask<>(new Callable() { @Override public String call() { String threadName = Thread.currentThread().getName(); // logger.info("[获取]-消费者线程:{}-获取到待处理数据数量:{}", threadName, busiDataEntities.size()); String allAccNum = ""; for (BusiDataEntity busiDataEntity : busiDataEntities) { allAccNum = allAccNum + busiDataEntity.getAccNum() + ","; try { // 模拟业务处理时间,默认500ms Thread.sleep(500); } catch (InterruptedException e) { e.printStackTrace(); } } return "消费者线程:" + threadName + "-已处理数据数量=" + busiDataEntities.size() + "-已处理的所有客户账号=" + allAccNum; } }); // 通过线程池进行任务处理 executorService.submit(futureTask); // 将每个线程的futureTask都放入同一个ArrayList中 tFutureTaskArrayList.add(futureTask); } }); // 循环tFutureTaskArrayList,检查所有futureTask是否都已经返回,没返回的阻塞等待,等都返回后证明所有线程都执行完成,提交offset // 使用线程池后,线程数一直保持在2000个左右。 for (int i = 0; i < tFutureTaskArrayList.size(); i++) { try { String returnStr = tFutureTaskArrayList.get(i).get(); logger.info("[线程执行完成]" + returnStr); } catch (ExecutionException e) { e.printStackTrace(); } } } //同步提交offset // tKafkaConsumer.commitSync(); //异步提交 tKafkaConsumer.commitAsync(new OffsetCommitCallback() { @Override public void onComplete(Map offsets, Exception exception) { if (exception != null) { logger.error("[失败]-提交offset失败!" + offsets); } else { logger.info("[成功]-提交offset成功!"); } } }); logger.info("【完成处理数据】-条数=[{}]-耗时=[{}]", dataCount, timer.intervalMs()); } } }

kafka Consumer 消费者使用多线程并发执行,并保证顺序消费, 第一种使用纯线程方式、第二种使用Executors线程池_第2张图片

测试结果:

    // [开始]-consumer拉取数据
    // [完成]-consumer拉取数据-条数=[2000]-耗时=[5]
    // [成功]-提交offset成功!
    // 【完成处理数据】-条数=[2000]-耗时=[1731]
    // [开始]-consumer拉取数据
    // [完成]-consumer拉取数据-条数=[2000]-耗时=[4]
    // [成功]-提交offset成功!
    // 【完成处理数据】-条数=[2000]-耗时=[1678]
    // [开始]-consumer拉取数据
    // [完成]-consumer拉取数据-条数=[2000]-耗时=[23]
    // [成功]-提交offset成功!
    // 【完成处理数据】-条数=[2000]-耗时=[1637]

    // 测试结果:2000条可以在2秒处理完成,则可以保证1000条时可以在1秒能处理完成,满足需求内容。
    // 使用线程池后,线程数一直保持在2000个左右

第三种使用Executors线程池(Executors+Runnable+CountDownLatch)

package com.autoee.demo.kafka.main;

import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.LoggerContext;
import cn.hutool.core.date.DateUtil;
import cn.hutool.core.date.TimeInterval;
import cn.hutool.json.JSONUtil;
import com.autoee.demo.riskmonitor.BusiDataEntity;
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * Title: 
* Desc:
* Date: 2022-8-19
* @author Double * @version 1.0.0 */ public class KafkaConsumerMutiThreadsTest5_Executors_HashMap_CountDownLatch { private static final Logger logger = LoggerFactory.getLogger(KafkaConsumerMutiThreadsTest5_Executors_HashMap_CountDownLatch.class); // 设置main方法执行时的日志输出级别 static { LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory(); List loggerList = loggerContext.getLoggerList(); loggerList.forEach(logger -> { logger.setLevel(Level.INFO); }); } // 需求内容:单个消费者,每秒需要处理1000条数据,每条数据的处理时间为500ms,相同accNum的数据需要保证消费的顺序 // 测试极限情况:数据已存在大量积压,启动消费者进行消费 // 每次拉取都达到设置的单次可以拉取的最大条数:2000条 // [开始]-consumer拉取数据 // [完成]-consumer拉取数据-条数=[2000]-耗时=[5] // [成功]-提交offset成功! // 【完成处理数据】-条数=[2000]-耗时=[1731] // [开始]-consumer拉取数据 // [完成]-consumer拉取数据-条数=[2000]-耗时=[4] // [成功]-提交offset成功! // 【完成处理数据】-条数=[2000]-耗时=[1678] // [开始]-consumer拉取数据 // [完成]-consumer拉取数据-条数=[2000]-耗时=[23] // [成功]-提交offset成功! // 【完成处理数据】-条数=[2000]-耗时=[1637] // 测试结果:2000条可以在2秒处理完成,则可以保证1000条时可以在1秒能处理完成,满足需求内容。 // 通过线程池进行处理,线程数非常平稳,而且只需要十个左右线程就能处理每次2000条的数据。 public static void main(String[] args) throws InterruptedException { Properties props = new Properties(); // bootstrap.servers:kafka集群地址 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); // 消费者组id props.put("group.id", "test_consumer_group"); //消费者组 // key.deserializer:key的反序列化器 props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // value.deserializer:value的反序列化器 props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // fetch.max.bytes:一次拉取的最小可返回数据量:1Bety props.put(ConsumerConfig.FETCH_MIN_BYTES_CONFIG, 100 * 1024); // fetch.max.bytes:一次拉取的最大数据量:50M props.put(ConsumerConfig.FETCH_MAX_BYTES_CONFIG, 50 * 1024 * 1024); // fetch.max.wait.ms:一次拉取的最大等待时间:500ms props.put(ConsumerConfig.FETCH_MAX_WAIT_MS_CONFIG, 500); // max.poll.records: 一次拉取的最大条数 props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 2000); // max.partition.fetch.bytes:一次拉取时,每个分区最大拉取数据量,默认1M props.put(ConsumerConfig.MAX_PARTITION_FETCH_BYTES_CONFIG, 1 * 1024 * 1024); // auto.offset.reset:当 Kafka 中没有初始偏移量或当前偏移量在服务器中不存在 (如,数据被删除了)时,自动设置开始消费的偏移量位置,默认latest。 // earliest:自动重置偏移量到最早的偏移量(从头开始消费)。 // latest:默认,自动重置偏移量为最新的偏移量(从最新的接收到的数据开始消费)。 // none:如果消费组原来的(previous)偏移量不存在,则向消费者抛异常。 anything:向消费者抛异常。 props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); // enable.auto.commit:是否允许自动提交offset,默认是。 props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false); // auto.commit.interval.ms:自动提交offset的时间间隔,默认5秒。 props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, 5000); // heartbeat.interval.ms:消费者心跳检测时间间隔,默认3秒。 props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 3000); // session.timeout.ms:session过期时间,默认10秒。 props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10000); // max.poll.interval.ms:一批次数据最大可以执行时间,默认5分钟。 props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 300000); // partition.assignment.strategy:分区分配策略,默认5分钟。 props.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, RangeAssignor.class.getName()); KafkaConsumer tKafkaConsumer = new KafkaConsumer(props); tKafkaConsumer.subscribe(Arrays.asList("riskMoniterTopic")); // 使用Executors中的CachedThreadPool,初始核心线程数为0,最大线程数为无限大,线程最大空闲时间为60秒 // corePoolSize=0 // maximumPoolSize=Integer.MAX_VALUE,即2147483647,基本属于无界。 // keepAliveTime=60秒 // 工作队列使用没有容量的 SynchronousQueue,来一个任务处理一个任务,不进行缓存。如果提交任务速度高于线程池中线程处理任务的速度,则会不断创建新线程。极端情况下会创建过多的线程,耗尽 CPU 和内存资源。 // 可以自定义线程池进行优化 ExecutorService executorService = Executors.newCachedThreadPool(); HashMap> busiDataHashMap; while (true) { TimeInterval timer = DateUtil.timer(); logger.info("[开始]-consumer拉取数据"); ConsumerRecords records = tKafkaConsumer.poll(500); int dataCount = records.count(); AtomicInteger tAtomicInteger = new AtomicInteger(); logger.info("[完成]-consumer拉取数据-条数=[{}]-耗时=[{}]", dataCount, timer.intervalMs()); // 拉取的数据条数大于0时,才进行处理操作 timer = DateUtil.timer(); if (dataCount > 0) { // 初始化hashMap:容量可以设置为拉取数据条数的1倍,或者2倍,2倍更加分散 // 消费者参数中设置一次拉取的最大条数为2000,基本不会超过该值。 // hashMap的hash碰撞概率较低,2000条数据,分布到4000容量的hashMap中时,基本不会出现碰撞,只有相同的key会在一起,导致整体执行时间为相同多个key顺序执行的时间 // [线程执行完成]消费者线程:pool-1-thread-1898-已处理数据数量=3-已处理的所有客户账号=GW0032,GW0032,GW0032, // [线程执行完成]消费者线程:pool-1-thread-1193-已处理数据数量=2-已处理的所有客户账号=KE0055,KE0055, // [线程执行完成]消费者线程:pool-1-thread-1187-已处理数据数量=2-已处理的所有客户账号=0E0005,0E0005, int capacity = dataCount * 2; busiDataHashMap = new HashMap<>(capacity); // 将拉取的数据按客户号码分散到ArrayList中 for (ConsumerRecord record : records) { Object value = record.value(); String jsonStr = JSONUtil.toJsonStr(value); // logger.info("[获取]-传入报文=[{}]", jsonStr); BusiDataEntity busiDataEntity = JSONUtil.toBean(jsonStr, BusiDataEntity.class); String accNum = busiDataEntity.getAccNum(); if (busiDataHashMap.containsKey(accNum)) { busiDataHashMap.get(accNum).add(busiDataEntity); } else { List newList = new ArrayList<>(); newList.add(busiDataEntity); busiDataHashMap.put(accNum, newList); } } // 循环ArrayList,每个下标中的List数据条数大于0时,开启一个线程循环处理该List中的全部数据,保证数据处理的顺序 int num = 0; int busiDataHashMapSize = busiDataHashMap.keySet().size(); // 使用CountDownLatch判断是否所有子线程都已执行完成,子线程个数等于busiDataHashMap中key的个数 CountDownLatch tCountDownLatch = new CountDownLatch(busiDataHashMapSize); busiDataHashMap.forEach((k, v) -> { List busiDataEntities = v; String threadName = ""; if (busiDataEntities.size() > 0) { threadName = k; // 使用Runnable执行同一个Key下的一组数据 Runnable runnableTask = new Runnable() { @Override public void run() { String threadName = Thread.currentThread().getName(); // logger.info("[获取]-消费者线程:{}-获取到待处理数据数量:{}", threadName, busiDataEntities.size()); String allAccNum = ""; String allBatchNo = ""; for (BusiDataEntity busiDataEntity : busiDataEntities) { allAccNum = allAccNum + busiDataEntity.getAccNum() + ","; allBatchNo = allBatchNo + busiDataEntity.getBatchNo() + ","; try { // 模拟业务处理时间,默认500ms Thread.sleep(500); } catch (InterruptedException e) { e.printStackTrace(); } } logger.info("[线程执行完成]-消费者线程:" + threadName + "-已处理数据数量=" + busiDataEntities.size() + "-已处理的所有客户账号=" + allAccNum + "-已处理的所有批次号=" + allBatchNo); // 每个线程处理完成后,将tCountDownLatch减1 tCountDownLatch.countDown(); } }; // 通过线程池进行任务处理 executorService.submit(runnableTask); } }); // 通过CountDownLatch阻塞等待,等待所有线程都执行完成,提交offset tCountDownLatch.await(); //同步提交offset // tKafkaConsumer.commitSync(); //异步提交 tKafkaConsumer.commitAsync(new OffsetCommitCallback() { @Override public void onComplete(Map offsets, Exception exception) { if (exception != null) { logger.error("[失败]-提交offset失败!" + offsets); } else { logger.info("[成功]-提交offset成功!"); } } }); logger.info("【完成处理数据】-条数=[{}]-耗时=[{}]", dataCount, timer.intervalMs()); logger.info("----------------------------------------------------------------------------------------------------------------------------------------"); } } } }

kafka Consumer 消费者使用多线程并发执行,并保证顺序消费, 第一种使用纯线程方式、第二种使用Executors线程池_第3张图片

测试结果:

        和第二种的执行时间差不多,但是各项性能指标好像更加平稳了,但是很出现线程阻塞的情况。

如果对您有帮助,请我喝杯咖啡吧!

kafka Consumer 消费者使用多线程并发执行,并保证顺序消费, 第一种使用纯线程方式、第二种使用Executors线程池_第4张图片

你可能感兴趣的:(kafka,kafka,Consumer,多线程,顺序消费,Executors)