OLED显示模块(原理讲解、STM32实例操作)

版权声明:本文为CSDN博主「Yngz_Miao」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_38410730/article/details/80033873
正文如下:


OLED的基础介绍

OLED的定义和优势

OLED,即有机发光二极管(Organic Light-Emitting Diode),又称为有机电激光显示(Organic Electroluminesence Display, OELD)。OLED由于同时具备自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优异之特性,被认为是下一代的平面显示器新兴应用技术。

OLED显示技术具有自发光的特性,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光,而且OLED显示屏幕可视角度大,并且能够节省电能,从2003年开始这种显示设备在MP3播放器上得到了应用。

LCD都需要背光,而OLED不需要,因为它是自发光的。这样同样的显示,OLED效果要来得好一些。以目前的技术,OLED的尺寸还难以大型化,但是分辨率确可以做到很高。

ALINETEK的0.96寸OLED模块

  • 模块有单色和双色两种可选,单色为纯蓝色,而双色则为黄蓝双色。单色模块每个像素点只有亮与不亮两种情况,没有颜色区分;
  • 尺寸小,显示尺寸为0.96寸,而模块的尺寸仅为27mm*26mm大小;
  • 高分辨率,该模块的分辨率为128*64;
  • 多种接口方式,该模块提供了总共4种接口包括:6800、8080两种并行接口方式、 4线的穿行SPI接口方式、IIC接口方式
  • 不需要高压,直接接3.3V就可以工作了。

OLED模块工作模式选择

4种模式通过模块的BS1/BS2设置(通过硬件来设置),BS1/BS2的设置与模块接口模式的关系如表所示:

OLED四种工作模式
接口方式 4线SPI IIC 8位6800 8位8080
BS1 0 1 0 1
BS2 0 0 1 1

下面是OLED模块的具体实物图:

ALIENTEK OLED模块默认设置是BS0接GND,BS1和BS2接VCC(8080模式),即使用8080并口方式,如果想要设置成其他的模式,则需要在OLED的背面,用烙铁修改BS0-BS2的设置。

从模块的原理图上,我们可以看到的更加清晰:

该模块采用8*2的2.52排针与外部连接,总共16个管脚,在16条线中,我们只用了15条,有一条是悬空的。15条线中,电源和地线占了2条,还剩下13条信号线。在不同的模式下,需要的信号线的数目是不同的,在8080模式下,需要全部的13条。

OLED控制器为SSD1306,也就是说:裸屏由SSD1306驱动,这也是一种较为广泛使用的led驱动芯片。

 

OLED的显示原理

OLED8080并行接口信号线说明

在上面,提到了本文中OLED采用8080的接口方式,其对应的并行接口图如下所示:

接下来,就对这个并行接口的各个信号线的含义进行解释说明:

  • CS:OLED片选信号;
  • WR:向OLED写入数据;
  • RD:从OLED读取数据;
  • D[7:0]:8位双向数据线;
  • RST(RES):硬复位OLED;
  • DC(RS):命令/数据标志(0,读写命令;1,读写数据)。

OLED8080并口读写过程

模块的8080并口读/写的过程为:

  • 将数据放到数据口;
  • 根据要写入/读取的数据的类型,设置DC(RS)为高(数据)/低(命令);
  • 拉低片选,选中SSD1306;
  • 接着我们根据是读数据,还是要写数据置RD/WR为低;
  • 读数据过程:在RD的上升沿, 使数据锁存到数据线(D[7:0])上;
  • 写数据过程:在WR的上升沿,使数据写入到SSD1306里面;
  • 拉高CS和DC(RS)。

并口写时序图

并口读时序图

OLED模块显存

OLED本身是没有显存的,它的显存是依赖于SSD1306提供的(之后讲解的TFTLCD是本身自带显存,利用FSMC来进行控制)。而SSD1306提供一块显存,芯片具体的讲解见下文。

SSD1306的显存总共为128*64bit大小,SSD1306将这些显存分为了8页。每页包含了128个字节,总共8页,这样刚好是128*64的点阵大小。

程序显示原理

在STM32的内部建立一个缓存(共128*8个字节),在每次修改的时候,只是修改STM32上的缓存(实际上就是SRAM),在修改完了之后,一次性把STM32上的缓存数据写入到OLED的GRAM。当然这个方法也有坏处,就是对于那些SRAM很小的单片机(比如51系列)就比较麻烦了。

 

SSD1306芯片

SSD1306芯片简介

SSD1306是一个单片CMOS、OLED/PLED驱动芯片可以驱动有机/聚合发光二极管点阵图形显示系统。由128 segments 和64 Commons组成。该芯片专为共阴极OLED面板设计。 

SSD1306中嵌入了对比度控制器、显示RAM和晶振,并因此减少了外部器件和功耗。有256级亮度控制。数据/命令的发送有三种接口可选择:6800/8000串口,I2C接口或SPI接口。适用于多数简介的应用,注入移动电话的屏显,MP3播放器和计算器等。

SSD1306芯片特性

  • 分辨率:128 * 64 点阵面板;
  • 电源:
  1. VDD = 1.65V to 3.3V,用于IC逻辑;
  2. VCC = 7V to 15V,用于面板驱动;
  • 点阵显示:
  1. OLED驱动输出电压,最大15V;
  2. Segment最大电流:100uA;
  3. 常见最大反向电流:15mA;
  4. 256级对比亮度电流控制;
  • 嵌入式128 * 64位SRAM显示缓存;
  • 引脚选择MCU接口:
  1. 8位6800/8000串口;
  2. 3/4线SPI接口;
  3. I2C接口。

SSD1306芯片命令

  • 命令0X81:设置对比度。包含两个字节,第一个0X81为命令,随后发送的一个字节为要设置的对比度的值。这个值设置得越大屏幕就越亮。
  • 命令0XAE/0XAF:0XAE为关闭显示命令;0XAF为开启显示命令。
  • 命令0X8D:包含2个字节,第一个为命令字,第二个为设置值,第二个字节的BIT2表示电荷泵的开关状态,该位为1,则开启电荷泵,为0则关闭。在模块初始化的时候,这个必须要开启,否则是看不到屏幕显示的。
  • 命令0XB0~B7:用于设置页地址,其低三位的值对应着GRAM的页地址。
  • 命令0X00~0X0F:用于设置显示时的起始列地址低四位。
  • 命令0X10~0X1F:用于设置显示时的起始列地址高四位。

 

STM32控制OLED

硬件连接

  • 单片机:STM32F103ZET6
  • 模块:OLED显示模块
  • 引脚连接:

之前的并行接口图是相对于显示屏上的引脚,而上图的并行接口图是相对于STM32的IO口的图。

OLED_DC(RS):OV SCL(PD3)、OLED_CS:FIFO WRST(PD6)、OLED_ED:OV SDA(PG13)、OLED_WR:FIFO RRST(PG14)、OLED_RST:FIFO OE(PG15)、OLED_D0:OV D0(PC0)、OLED_D1:OV D1(PC1)、OLED_D2:OV D2(PC2)、OLED_D3:OV D3(PC3)、OLED_D4:OV D4(PC4)、OLED_D5:OV D5(PC5)、OLED_D6:OV D6(PC6)、OLED_D7:OV D7(PC7)

  • 硬件资源:指示灯DS0、OLED模块

STM32控制程序

  • 设置STM32与OLED模块相连接的IO(设置与OLED相连的IO口设置为输出);
  • 初始化OLED模块(硬复位SSD1306、驱动IC初始化程序、开启显示、清零显存、开始显示);
  • 通过函数将字符和数字显示到OLED模块上。
//OLED模式设置
//0: 4线串行模式  (模块的BS1,BS2均接GND)
//1: 并行8080模式 (模块的BS1,BS2均接VCC)
#define OLED_MODE 	1 
		    						  
//---------------------------OLED端口定义--------------------------  					   
#define OLED_CS  PDout(6)
#define OLED_RST PGout(15) 	
#define OLED_RS  PDout(3)
#define OLED_WR  PGout(14)		  
#define OLED_RD  PGout(13)	   
//PC0~7,作为数据线
 
#define DATAOUT(x) GPIO_Write(GPIOC,x);//输出  
  
//使用4线串行接口时使用 
#define OLED_SCLK PCout(0)
#define OLED_SDIN PCout(1)
		     
#define OLED_CMD  0	//写命令
#define OLED_DATA 1	//写数据
//OLED的显存
//存放格式如下.
//[0]0 1 2 3 ... 127	
//[1]0 1 2 3 ... 127	
//[2]0 1 2 3 ... 127	
//[3]0 1 2 3 ... 127	
//[4]0 1 2 3 ... 127	
//[5]0 1 2 3 ... 127	
//[6]0 1 2 3 ... 127	
//[7]0 1 2 3 ... 127 		   
u8 OLED_GRAM[128][8];	 
 
//更新显存到LCD		 
void OLED_Refresh_Gram(void)
{
	u8 i,n;		    
	for(i=0;i<8;i++)  
	{  
		OLED_WR_Byte (0xb0+i,OLED_CMD);    //设置页地址(0~7)
		OLED_WR_Byte (0x00,OLED_CMD);      //设置显示位置—列低地址
		OLED_WR_Byte (0x10,OLED_CMD);      //设置显示位置—列高地址   
		for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); 
	}   
}
 
//向SSD1306写入一个字节。
//dat:要写入的数据/命令
//cmd:数据/命令标志 0,表示命令;1,表示数据;
void OLED_WR_Byte(u8 dat,u8 cmd)
{
	DATAOUT(dat);	    
 	OLED_RS=cmd;
	OLED_CS=0;	   
	OLED_WR=0;	 
	OLED_WR=1;
	OLED_CS=1;	  
	OLED_RS=1;	 
} 	    	    
	  	  
//开启OLED显示    
void OLED_Display_On(void)
{
	OLED_WR_Byte(0X8D,OLED_CMD);  //SET DCDC命令
	OLED_WR_Byte(0X14,OLED_CMD);  //DCDC ON
	OLED_WR_Byte(0XAF,OLED_CMD);  //DISPLAY ON
}
//关闭OLED显示     
void OLED_Display_Off(void)
{
	OLED_WR_Byte(0X8D,OLED_CMD);  //SET DCDC命令
	OLED_WR_Byte(0X10,OLED_CMD);  //DCDC OFF
	OLED_WR_Byte(0XAE,OLED_CMD);  //DISPLAY OFF
}		   			 
//清屏函数,清完屏,整个屏幕是黑色的!和没点亮一样!!!	  
void OLED_Clear(void)  
{  
	u8 i,n;  
	for(i=0;i<8;i++)for(n=0;n<128;n++)OLED_GRAM[n][i]=0X00;  
	OLED_Refresh_Gram();//更新显示
}
//画点 
//x:0~127
//y:0~63
//t:1 填充 0,清空				   
void OLED_DrawPoint(u8 x,u8 y,u8 t)
{
	u8 pos,bx,temp=0;
	if(x>127||y>63)return;//超出范围了.
	pos=7-y/8;
	bx=y%8;
	temp=1<<(7-bx);
	if(t)OLED_GRAM[x][pos]|=temp;
	else OLED_GRAM[x][pos]&=~temp;	    
}
//x1,y1,x2,y2 填充区域的对角坐标
//确保x1<=x2;y1<=y2 0<=x1<=127 0<=y1<=63	 	 
//dot:0,清空;1,填充	  
void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot)  
{  
	u8 x,y;  
	for(x=x1;x<=x2;x++)
	{
		for(y=y1;y<=y2;y++)OLED_DrawPoint(x,y,dot);
	}													    
	OLED_Refresh_Gram();//更新显示
}
//在指定位置显示一个字符,包括部分字符
//x:0~127
//y:0~63
//mode:0,反白显示;1,正常显示				 
//size:选择字体 12/16/24
void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode)
{      			    
	u8 temp,t,t1;
	u8 y0=y;
	u8 csize=(size/8+((size%8)?1:0))*(size/2);		//得到字体一个字符对应点阵集所占的字节数
	chr=chr-' ';//得到偏移后的值		 
    for(t=0;t=' '))//判断是不是非法字符!
    {       
        if(x>(128-(size/2))){x=0;y+=size;}
        if(y>(64-size)){y=x=0;OLED_Clear();}
        OLED_ShowChar(x,y,*p,size,1);	 
        x+=size/2;
        p++;
    }  
	
}	   
//初始化SSD1306					    
void OLED_Init(void)
{ 	
 
 	GPIO_InitTypeDef  GPIO_InitStructure;
 	
 	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_GPIOD|RCC_APB2Periph_GPIOG, ENABLE);	 //使能PC,D,G端口时钟
 
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3|GPIO_Pin_6;	 //PD3,PD6推挽输出  
 	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//速度50MHz
 	GPIO_Init(GPIOD, &GPIO_InitStructure);	  //初始化GPIOD3,6
 	GPIO_SetBits(GPIOD,GPIO_Pin_3|GPIO_Pin_6);	//PD3,PD6 输出高
 
 	GPIO_InitStructure.GPIO_Pin =0xFF; //PC0~7 OUT推挽输出
 	GPIO_Init(GPIOC, &GPIO_InitStructure);
 	GPIO_SetBits(GPIOC,0xFF); //PC0~7输出高
 
 	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15;				 //PG13,14,15 OUT推挽输出
 	GPIO_Init(GPIOG, &GPIO_InitStructure);
 	GPIO_SetBits(GPIOG,GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15);						 //PG13,14,15 OUT  输出高
  							  
	OLED_CS=1;
	OLED_RS=1;	 
	
	OLED_RST=0;
	delay_ms(100);
	OLED_RST=1; 
					  
	OLED_WR_Byte(0xAE,OLED_CMD); //关闭显示
	OLED_WR_Byte(0xD5,OLED_CMD); //设置时钟分频因子,震荡频率
	OLED_WR_Byte(80,OLED_CMD);   //[3:0],分频因子;[7:4],震荡频率
	OLED_WR_Byte(0xA8,OLED_CMD); //设置驱动路数
	OLED_WR_Byte(0X3F,OLED_CMD); //默认0X3F(1/64) 
	OLED_WR_Byte(0xD3,OLED_CMD); //设置显示偏移
	OLED_WR_Byte(0X00,OLED_CMD); //默认为0
 
	OLED_WR_Byte(0x40,OLED_CMD); //设置显示开始行 [5:0],行数.
													    
	OLED_WR_Byte(0x8D,OLED_CMD); //电荷泵设置
	OLED_WR_Byte(0x14,OLED_CMD); //bit2,开启/关闭
	OLED_WR_Byte(0x20,OLED_CMD); //设置内存地址模式
	OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10;
	OLED_WR_Byte(0xA1,OLED_CMD); //段重定义设置,bit0:0,0->0;1,0->127;
	OLED_WR_Byte(0xC0,OLED_CMD); //设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数
	OLED_WR_Byte(0xDA,OLED_CMD); //设置COM硬件引脚配置
	OLED_WR_Byte(0x12,OLED_CMD); //[5:4]配置
		 
	OLED_WR_Byte(0x81,OLED_CMD); //对比度设置
	OLED_WR_Byte(0xEF,OLED_CMD); //1~255;默认0X7F (亮度设置,越大越亮)
	OLED_WR_Byte(0xD9,OLED_CMD); //设置预充电周期
	OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2;
	OLED_WR_Byte(0xDB,OLED_CMD); //设置VCOMH 电压倍率
	OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc;
 
	OLED_WR_Byte(0xA4,OLED_CMD); //全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏)
	OLED_WR_Byte(0xA6,OLED_CMD); //设置显示方式;bit0:1,反相显示;0,正常显示	    						   
	OLED_WR_Byte(0xAF,OLED_CMD); //开启显示	 
	OLED_Clear();
}  
int main(void)
 {	u8 t;
	delay_init();	    	 //延时函数初始化	  
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);	 //设置NVIC中断分组2:2位抢占优先级,2位响应优先级
 	LED_Init();			     //LED端口初始化
	OLED_Init();			//初始化OLED      
  OLED_ShowString(0,0,"ALIENTEK",24);  
	OLED_ShowString(0,24, "0.96' OLED TEST",16);  
 	OLED_ShowString(0,40,"ATOM 2015/1/14",12);  
 	OLED_ShowString(0,52,"ASCII:",12);  
 	OLED_ShowString(64,52,"CODE:",12);  
  
	OLED_Refresh_Gram();		//更新显示到OLED 
	t=' ';  
	while(1) 
	{		
		OLED_ShowChar(48,48,t,16,1);//显示ASCII字符	   
		OLED_Refresh_Gram();
		t++;
		if(t>'~')t=' ';
		OLED_ShowNum(103,48,t,3,16);//显示ASCII字符的码值 
		delay_ms(500);
		LED0=!LED0;
	}	  
	
}

STM32控制程序分析

OLED_Refresh_Gram()函数:更新显存到OLED。

在STM32内部定义了一个块GRAM:

u8 OLED_GRAM[128][8];
 
   
   
   
   

此部分GRAM对应OLED模块上的GRAM。在操作的时候,我们只需要修改STM32内部的GRAM,然后通过OLED_Refresh_Gram()函数将GRAM一次性刷新到OLED的GRAM中。

	for(i=0;i<8;i++)  
	{  
		OLED_WR_Byte (0xb0+i,OLED_CMD);    //设置页地址(0~7)
		OLED_WR_Byte (0x00,OLED_CMD);      //设置显示位置—列低地址
		OLED_WR_Byte (0x10,OLED_CMD);      //设置显示位置—列高地址   
		for(n=0;n<128;n++) OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); 
	} 

函数的具体内容先设置页地址,然后写入列地址,然后从0开始写入128个字节,这样就将一页的内容刷新过去。重复8次,将8页的内容全部刷新过去。

OLED_WR_Byte()函数:向SSD1306写入数据或命令(参数cmd为1时表示数据,为0时表示命令)。这里的步骤是和上文中8080并口写时序图的步骤基本类似。具体为:

void OLED_WR_Byte(u8 dat,u8 cmd)
{
	DATAOUT(dat);	    
 	OLED_RS=cmd;
	OLED_CS=0;	   
	OLED_WR=0;	 
	OLED_WR=1;
	OLED_CS=1;	  
	OLED_RS=1;	 
} 	

首先通过DATAOUT()函数将数据放到数据口,其中DATAOUT()是一个宏定义:

#define DATAOUT(x) GPIO_Write(GPIOC,x);//输出  
 
   
   
   
   

其次,在判断cmd参数是命令还是数据,如果是命令,DC置高;如果是数据,DC置低。接下来,拉低片选,将WR拉低再拉高产生一个上升沿。这样数据就写入到了控制器。最后,拉高片选、DC。

OLED_DrawPoint()函数:画点函数,这里有一个对应关系需要理解。

OLED_GRAM[128][8]中的128代表列数(x坐标),而8代表的是页,每页又包含8行,总共是64行(y坐标)。从高到低对应行数从小到大。比如,我们要在x=100,y=29这个点写入1,则可以用这个句子实现:

OLED_GRAM[100][4]=1<<2;
 
   
   
   
   

一个通用的点(x,y)置1的表达式为:

OLED_GRAM[x][7-y/8]=1<<(7-y%8);
 
   
   
   
   

其中,x的取值范围为0-127;y的取值范围为0-63。

OLED_ShowChar()函数:显示字符。这里的字符采用16*8的显示方式,也就是说在OLED上16*8数目大小的点阵表示一个字符,即128个点。

下面截取了一部分16*8的字符库的内容,一个字符用16个u8类型的数字表示:

{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*" ",0*/
{0x00,0x00,0x00,0x00,0x00,0x00,0x1F,0xCC,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00},/*"!",1*/
{0x00,0x00,0x08,0x00,0x30,0x00,0x60,0x00,0x08,0x00,0x30,0x00,0x60,0x00,0x00,0x00},/*""",2*/
{0x02,0x20,0x03,0xFC,0x1E,0x20,0x02,0x20,0x03,0xFC,0x1E,0x20,0x02,0x20,0x00,0x00},/*"#",3*/
{0x00,0x00,0x0E,0x18,0x11,0x04,0x3F,0xFF,0x10,0x84,0x0C,0x78,0x00,0x00,0x00,0x00},/*"$",4*/
{0x0F,0x00,0x10,0x84,0x0F,0x38,0x00,0xC0,0x07,0x78,0x18,0x84,0x00,0x78,0x00,0x00},/*"%",5*/
{0x00,0x78,0x0F,0x84,0x10,0xC4,0x11,0x24,0x0E,0x98,0x00,0xE4,0x00,0x84,0x00,0x08},/*"&",6*/

具体的显示方式如下图所示:

从上到下,从左到右,高位在前。就是这样的取模方式,将字符集按照16*8的大小取模出来。1表示亮,0表示暗。

显示字符函数的具体实现:

        for(t1=0;t1<8;t1++)
		{
			if(temp&0x80)OLED_DrawPoint(x,y,mode);
			else OLED_DrawPoint(x,y,!mode);
			temp<<=1;
			y++;
			if((y-y0)==size)
			{
				y=y0;
				x++;
				break;
			}
		}  

这里也是按照从上到下,从左到右的取模方式来进行的。先得到最高位,然后判断是写1还是0,画点;接着读第二位,如此循环,直到一个字符的点阵全部取完为止。这里涉及到的列地址和行地址的自增,不难理解。

 

你可能感兴趣的:(STM32,stm32,物联网)