论文下载地址: https://doi.org/10.1145/3340531.3412016
发表期刊:CIKM
Publish time: 2020
作者及单位:
数据集: 正文中的介绍
代码:
其他:
其他人写的文章
简要概括创新点: 用的DiffNet的数据集,可能就是针对DiffNet++进行挑战的。①channel就是embedding的dimension。 ②multi-label就是 user-多个item(label)。③partial relationship就是因为某些关系形成的子连通域(子图)。④Atttention是以a channel-wise way进行的,传统的是以node-wise way进行的,其实是更精细化了。⑤数据集本身就是稀疏的,SoRec本来就是为了解决稀疏性,本文就说恰好基于稀疏性,有点面向数据编程了(如果不稀疏的话,计算量就bao了)
- (3) In light of this, we propose MEGCN (Multi-channel Encoding Graph Convolutional Network), a partial relationship aware influence diffusion model, for social recommendation. (有鉴于此,我们提出了一种 基于部分关系的影响扩散模型 MEGCN(Multi-channel Encoding Graph Convolutional Network),用于社会推荐。)
- The key idea behind this model is a feature-wise message computation with sparse regularization in the influence diffusion process . (该模型背后的关键思想是在 影响扩散过程 中采用 稀疏正则化 的 特征信息计算。)
- More specifically, the layer-wise diffusion process starts with an initial embedding for each user, which can be a free vector that captures the latent interest or any explicit features. (更具体地说,分层扩散过程 从每个用户的初始嵌入开始,该嵌入可以是捕获潜在兴趣或任何显式特征的自由向量。)
- Then a GCN-like information aggregation is conducted in each layer, which can help capture neighborhood contexts. At its core, under the assumption of channel-wise graph sparsity, the traditional node-wise message computation is changed into feature-wise computation, such that user interests and shared interests will be simultaneously captured in the layer-wise inforation diffusion process. (然后在每一层中进行 类似GCN 的信息聚合,这有助于捕获邻域上下文。其核心是在 信道图稀疏的假设下 ,将传统的节点消息计算 转化为 特征计算 ,从而在 分层信息扩散过程 中同时捕获用户兴趣和 共享兴趣。)
- In the data preparation step, we filter out users with less than 2 historical action records and 2 social neighbors in both datasets. (在数据准备阶段,我们筛选出两个数据集中历史动作记录和社交邻居少于2个的用户。)
• Human-centered computing → Social recommendation; • Information systems → Recommender systems.
Social Network; Recommendation; Graph Neural Network
(1) Discerning user preference with sparse user behavior data is a key issue in a recommendation task. The social recommendation has emerged as a pioneering direction based on the social influence theory which states connected people would show similar interests pattern [30, 33, 35, 39]. (在推荐任务中,利用稀疏的用户行为数据识别用户偏好是一个关键问题。社会推荐是基于社会影响理论的一个开创性方向,该理论指出,有关联的人会表现出相似的偏好模式[30、33、35、39]。)
(2) Previous studies for social recommendation attempt to model social effects in various ways, such as by trust propagation, regularization loss, matrix factorization, network embedding and deep neural networks [30, 31, 38]. However, these studies have some limitations. (之前的社会推荐研究试图以各种方式模拟社会效应,例如通过信任传播、正则化损失、矩阵分解、网络嵌入和深度神经网络[30,31,38]。然而,这些研究有一些局限性。)
(3) In light of this, we propose MEGCN (Multi-channel Encoding Graph Convolutional Network), a partial relationship aware influence diffusion model, for social recommendation. (有鉴于此,我们提出了一种 基于部分关系的影响扩散模型 MEGCN(Multi-channel Encoding Graph Convolutional Network),用于社会推荐。)
(4) We summarize the contributions of this paper as follows: (我们将本文的贡献总结如下:)
============
(1) In general, a social network can be described as a set of nodes and links, with nodes representation matrix X X X and adjacency matrix A A A containing link weights. The degree matrix D i i = ∑ j A i j D_{ii} = \sum_j A_{ij} Dii=∑jAij represents the sum of all link weights to node i i i. In consistent with most studies, identity matrix I I I is used in the graph Laplacian operation and help realize self-loop operation on the graph. (一般来说,社交网络可以描述为一组节点和链接,节点表示矩阵 X X X和邻接矩阵 a a a包含链接权重。度矩阵 D i i = ∑ j a i j D_{ii}=\sum_ja_{ij} Dii=∑jaij表示节点 i i i的所有链接权重之和。与大多数研究一致,单位矩阵 I I I 用于 图形拉普拉斯运算 并帮助在图形上实现 自循环运算。)
(2) In a social recommendation system, there are two sets of entities (a user set U U U and an item set V V V) and two graphs (a user-item interaction graph R R R and a social network S S S). (在社交推荐系统中,有两组实体(用户集 U U U和项目集 V V V)和两个图形(用户项目交互图 R R R和社交网络 S S S)。)
(3) Besides, the associated feature matrix P P P and Q Q Q of users (e.g, user profile) and items (item text representation, item visual representation)) are usually provided. (此外,通常会提供用户(例如用用户画像)和项目(项目文本表示、项目视觉表示)的相关特征矩阵 P P P和 Q Q Q。)
(4) Note that social recommendation is a typical graph-based multilabel learning task with one user interacts with multiple items, which needs to model label-induced sub-relations among users. (请注意,社交推荐是一项 典型的基于图形的多标签学习任务 ,一个用户与多个项目交互,需要对 标签诱导的用户子关系进行建模。)
(1) Graph Attention Network utilizes cosine similarity metric to measure the importance weight of the first order neighbors. More formally, given central user node u u u’s representation X u X_u Xu and one of its first-order neighbor node s s s’s representation X u s X^s_u Xus, the similarity score can be calculated as: ( 图注意网络 利用 余弦相似性度量 来度量一阶邻域的重要性权重。更正式地说,给定中央用户节点 u u u的表示形式 X u X_u Xu和它的一阶邻居节点 s s s的一个表示形式 X u s X^s_u Xus, 相似度得分可计算为:)
(2) However, the method is computationally expensive due to multiple times of pairwise similarity computations. (然而,由于多次成对相似性计算,该方法的计算成本很高。)
(3) When graph attention operations are performed on nodes of graph with sparse channel representations, pairwise node similarity can be approximated as: (当在具有稀疏通道表示的图的节点上执行图注意操作时,成对节点相似性可以近似为:)
(4) This approximation mainly depends on channel-wise sparsity between two adjoint nodes, (这种近似主要取决于两个伴随节点之间的 通道稀疏性,)
(5) Under such circumstances, linking weight between user u u u and s s s can be approximated by: (在这种情况下,用户 u u u和 s s s之间的链接权重可以近似为:)
(6)Then, the node-wise multiplication between nodes are simplified into element-wise multiplication , and weighted aggregation in GAT can be transformed into: (然后,将节点间的 节点 乘法简化为 元素 乘法,GAT中的加权聚合可以转化为:)
(7) Note that the above normalization operation is performed in a channel-wise way while original graph attention mechanism realizes message computation, aggregation and update in a node-wise way. (注意,上述规一化操作是以通道方式执行的,而 原始的图形注意机制 以 节点方式 实现消息计算、聚合和更新。)
(1) To show our model’s motivations, we test the channel-wise sparsity assumption on handcrafted datasets. (为了展示我们模型的动机,我们在手工制作的数据集上测试了 通道稀疏性假设)
(2) As shown in Figure 3(a) , the mean squared error difference between MEGCN output and GAT output with the same sparse node representation is minimal when node sparsity percentage is very low. (如图3(a)所示,当节点稀疏度百分比非常低时,具有相同稀疏节点表示的MEGCN输出和GAT输出之间的 均方误差差 最小。)
(3) To this end, we could adopt the same ideas on the social network-based recommendation system, which is a multi-label learning task with extreme label sparsity. (为此,我们可以在基于社交网络的推荐系统上采用相同的想法,这是一个具有 极端标签稀疏性 的 多标签学习任务。)
图4:提出模型的说明。左侧子图显示了整个模型框架,右侧子图显示了影响扩散过程中的MEGCN。特别是对于MEGCN,稀疏影响被用来转换多信道影响和用户的信道稀疏性。需要注意的是,规范化掩码可以被视为社交网络上的一种兴趣分离,以模拟部分关系,它将社交网络划分为每个通道中具有稀疏链接的兴趣子结构。特别是,MEGCN通过元素级产品操作捕获多通道特征相似性。影响力管理的提出是为了保证社会影响力的稀疏性。此外,ChannelNorm设计用于平衡通道值,从而防止数值问题,并增加节点区分,以缓解过平滑问题。
Since the social recommendation task involves social networks, we compare MEGCN with various state-of-the-art social network-based graph neural networks: (由于社交推荐任务涉及社交网络,我们将MEGCN与各种最先进的基于社交网络的图形神经网络进行比较:)
As our work focuses on recommending top-N items, we use two ranking-based evaluation metrics, which are Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG). The two metrics are defined as: (由于我们的工作重点是推荐排名前N的项目,我们使用了两个基于排名的评估指标,即命中率(HR)和标准化贴现累积收益(NDCG)。这两个指标定义为:)
(1) In this paper, we propose MEGCN, a graph neural network based on channel-wise sparsity. (本文提出了一种基于 信道稀疏性 的图神经网络MEGCN。)
(2) MEGCN simplifies GAT operation and utilizes two models, InfluenceNorm and ChannelNorm, to capture both self interest and shared interest in the influence diffusion process of social recommendation task. (MEGCN简化了GAT的操作,并利用两种模型,即InfluenceNorm和ChannelNorm,在社会推荐任务的影响扩散过程中捕获了 个人兴趣 和 共享兴趣 。)
(3) Essentially, our work can model the sparse label-induced structures in the original social network, namely partial relationship, without suffering from expensive computational cost of graph attention based models. (本质上,我们的工作可以对原始社会网络中的稀疏标签诱导结构(即部分关系)进行建模,而不必承受基于图形注意模型的昂贵计算成本。)
(4) Finally, experimental results validate the effectiveness of the proposed models. In particular, the MEGCN achieves the highest HR and NDCG score on all datasets. (最后,实验结果验证了所提模型的有效性。特别是,MEGCN在所有数据集上的HR和NDCG得分最高。)
(1) Future research will be conducted from both theoretical and practical perspectives. Theoretically, we will explore how to further improve the performance of the MEGCN models from the optimization point of view. (未来的研究将从理论和实践两个角度进行。理论上,我们将从优化的角度探讨如何进一步提高MEGCN模型的性能。)
(2) Besides, since graph sub-structure has been validated to be useful for graph modeling [22, 25], we will explore the usefulness of such information in the social recommendation task. (此外,由于图的子结构已被证实对图建模有用[22,25],我们将探讨这些信息在社会推荐任务中的有用性。)
(3) In practice, we will apply the method to other graph-based multi-label tasks and test whether it it applicable for all kinds of tasks. (在实践中,我们将把该方法应用于其他基于图的多标签任务,并测试它是否适用于所有类型的任务。)