《MATLAB 神经网络43个案例分析》是MATLAB技术论坛(www.matlabsky.com)策划,由王小川老师主导,2013年北京航空航天大学出版社出版的关于MATLAB为工具的一本MATLAB实例教学书籍,是在《MATLAB神经网络30个案例分析》的基础上修改、补充而成的,秉承着“理论讲解—案例分析—应用扩展”这一特色,帮助读者更加直观、生动地学习神经网络。
《MATLAB神经网络43个案例分析》共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,《MATLAB神经网络43个案例分析》还介绍了MATLAB R2012b中神经网络工具箱的新增功能与特性,如神经网络并行计算、定制神经网络、神经网络高效编程等。
近年来随着人工智能研究的兴起,神经网络这个相关方向也迎来了又一阵研究热潮,由于其在信号处理领域中的不俗表现,神经网络方法也在不断深入应用到语音和图像方向的各种应用当中,本文结合书中案例,对其进行仿真实现,也算是进行一次重新学习,希望可以温故知新,加强并提升自己对神经网络这一方法在各领域中应用的理解与实践。自己正好在多抓鱼上入手了这本书,下面开始进行仿真示例,主要以介绍各章节中源码应用示例为主,本文主要基于MATLAB2015b(32位)平台仿真实现,这是本书第三十四章广义神经网络的聚类算法实例,话不多说,开始!
打开MATLAB,点击“主页”,点击“打开”,找到示例文件
选中FCMGRNN.m,点击“打开”
FCMGRNN.m源码如下:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%功能: 该代码为基于FCM-GRNN的聚类算法
%环境:Win7,Matlab2015b
%Modi: C.S
%时间:2022-06-20
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 该代码为基于FCM-GRNN的聚类算法
%
% <html>
% <table border="0" width="600px" id="table1"> <tr> <td><b><font size="2">该案例作者申明:</font></b></td> </tr> <tr><td><span class="comment"><font size="2">1:本人长期驻扎在此<a target="_blank" href="http://www.ilovematlab.cn/forum-158-1.html"><font color="#0000FF">板块</font></a>里,对该案例提问,做到有问必答。本套书籍官方网站为:<a href="http://video.ourmatlab.com">video.ourmatlab.com</a></font></span></td></tr><tr> <td><font size="2">2:点此<a href="http://union.dangdang.com/transfer/transfer.aspx?from=P-284318&backurl=http://www.dangdang.com/">从当当预定本书</a>:<a href="http://union.dangdang.com/transfer/transfer.aspx?from=P-284318&backurl=http://www.dangdang.com/">《Matlab神经网络30个案例分析》</a>。</td></tr><tr> <td><p class="comment"></font><font size="2">3</font><font size="2">:此案例有配套的教学视频,视频下载方式<a href="http://video.ourmatlab.com/vbuy.html">video.ourmatlab.com/vbuy.html</a></font><font size="2">。 </font></p></td> </tr> <tr> <td><span class="comment"><font size="2"> 4:此案例为原创案例,转载请注明出处(《Matlab神经网络30个案例分析》)。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 5:若此案例碰巧与您的研究有关联,我们欢迎您提意见,要求等,我们考虑后可以加在案例里。</font></span></td> </tr> </table>
% </html>
%% 清空环境文件
clear all;
clc;
tic
%% 提取攻击数据
%攻击样本数据
load netattack;
P1=netattack;
T1=P1(:,39)';
P1(:,39)=[];
%数据大小
[R1,C1]=size(P1);
csum=20; %提取训练数据多少
%% 模糊聚类
data=P1;
[center,U,obj_fcn] = fcm(data,5);
for i=1:R1
[value,idx]=max(U(:,i));
a1(i)=idx;
end
%% 模糊聚类结果分析
Confusion_Matrix_FCM=zeros(6,6);
Confusion_Matrix_FCM(1,:)=[0:5];
Confusion_Matrix_FCM(:,1)=[0:5]';
for nf=1:5
for nc=1:5
Confusion_Matrix_FCM(nf+1,nc+1)=length(find(a1(find(T1==nf))==nc));
end
end
%% 网络训练样本提取
cent1=P1(find(a1==1),:);cent1=mean(cent1);
cent2=P1(find(a1==2),:);cent2=mean(cent2);
cent3=P1(find(a1==3),:);cent3=mean(cent3);
cent4=P1(find(a1==4),:);cent4=mean(cent4);
cent5=P1(find(a1==5),:);cent5=mean(cent5);
%提取范数最小为训练样本
for n=1:R1;
ecent1(n)=norm(P1(n,:)-cent1);
ecent2(n)=norm(P1(n,:)-cent2);
ecent3(n)=norm(P1(n,:)-cent3);
ecent4(n)=norm(P1(n,:)-cent4);
ecent5(n)=norm(P1(n,:)-cent5);
end
for n=1:csum
[va me1]=min(ecent1);
[va me2]=min(ecent2);
[va me3]=min(ecent3);
[va me4]=min(ecent4);
[va me5]=min(ecent5);
ecnt1(n,:)=P1(me1(1),:);ecent1(me1(1))=[];tcl(n)=1;
ecnt2(n,:)=P1(me2(1),:);ecent2(me2(1))=[];tc2(n)=2;
ecnt3(n,:)=P1(me3(1),:);ecent3(me3(1))=[];tc3(n)=3;
ecnt4(n,:)=P1(me4(1),:);ecent4(me4(1))=[];tc4(n)=4;
ecnt5(n,:)=P1(me5(1),:);ecent5(me5(1))=[];tc5(n)=5;
end
P2=[ecnt1;ecnt2;ecnt3;ecnt4;ecnt5];T2=[tcl,tc2,tc3,tc4,tc5];
k=0;
%% 迭代计算
for nit=1:10%开始迭代
%% 广义神经网络聚类
net = newgrnn(P2',T2,50); %训练广义网络
a2=sim(net,P1') ; %预测结果
%输出标准化(根据输出来分类)
a2(find(a2<=1.5))=1;
a2(find(a2>1.5&a2<=2.5))=2;
a2(find(a2>2.5&a2<=3.5))=3;
a2(find(a2>3.5&a2<=4.5))=4;
a2(find(a2>4.5))=5;
%% 网络训练数据再次提取
cent1=P1(find(a2==1),:);cent1=mean(cent1);
cent2=P1(find(a2==2),:);cent2=mean(cent2);
cent3=P1(find(a2==3),:);cent3=mean(cent3);
cent4=P1(find(a2==4),:);cent4=mean(cent4);
cent5=P1(find(a2==5),:);cent5=mean(cent5);
for n=1:R1%计算样本到各个中心的距离
ecent1(n)=norm(P1(n,:)-cent1);
ecent2(n)=norm(P1(n,:)-cent2);
ecent3(n)=norm(P1(n,:)-cent3);
ecent4(n)=norm(P1(n,:)-cent4);
ecent5(n)=norm(P1(n,:)-cent5);
end
%选择离每类中心最近的csum个样本
for n=1:csum
[va me1]=min(ecent1);
[va me2]=min(ecent2);
[va me3]=min(ecent3);
[va me4]=min(ecent4);
[va me5]=min(ecent5);
ecnt1(n,:)=P1(me1(1),:);ecent1(me1(1))=[];tc1(n)=1;
ecnt2(n,:)=P1(me2(1),:);ecent2(me2(1))=[];tc2(n)=2;
ecnt3(n,:)=P1(me3(1),:);ecent3(me3(1))=[];tc3(n)=3;
ecnt4(n,:)=P1(me4(1),:);ecent4(me4(1))=[];tc4(n)=4;
ecnt5(n,:)=P1(me5(1),:);ecent5(me5(1))=[];tc5(n)=5;
end
p2=[ecnt1;ecnt2;ecnt3;ecnt4;ecnt5];T2=[tc1,tc2,tc3,tc4,tc5];
%统计分类结果
Confusion_Matrix_GRNN=zeros(6,6);
Confusion_Matrix_GRNN(1,:)=[0:5];
Confusion_Matrix_GRNN(:,1)=[0:5]';
for nf=1:5
for nc=1:5
Confusion_Matrix_GRNN(nf+1,nc+1)=length(find(a2(find(T1==nf))==nc));
end
end
pre2=0;
for n=2:6;
pre2=pre2+max(Confusion_Matrix_GRNN(n,:));
end
pre2=pre2/R1*100;
end
%% 结果显示
Confusion_Matrix_FCM
Confusion_Matrix_GRNN
toc
% web browser www.matlabsky.com
%%
% <html>
% <table width="656" align="left" > <tr><td align="center"><p><font size="2"><a href="http://video.ourmatlab.com/">Matlab神经网络30个案例分析</a></font></p><p align="left"><font size="2">相关论坛:</font></p><p align="left"><font size="2">《Matlab神经网络30个案例分析》官方网站:<a href="http://video.ourmatlab.com">video.ourmatlab.com</a></font></p><p align="left"><font size="2">Matlab技术论坛:<a href="http://www.matlabsky.com">www.matlabsky.com</a></font></p><p align="left"><font size="2">M</font><font size="2">atlab函数百科:<a href="http://www.mfun.la">www.mfun.la</a></font></p><p align="left"><font size="2">Matlab中文论坛:<a href="http://www.ilovematlab.com">www.ilovematlab.com</a></font></p></td> </tr></table>
% </html>
添加完毕,点击“运行”,开始仿真,输出仿真结果如下:
Iteration count = 1, obj. fcn = 813629448064.656860
Iteration count = 2, obj. fcn = 614873525657.481690
Iteration count = 3, obj. fcn = 591872787995.399050
Iteration count = 4, obj. fcn = 346227929494.264950
Iteration count = 5, obj. fcn = 3784090337.694994
Iteration count = 6, obj. fcn = 1007849508.007932
Iteration count = 7, obj. fcn = 697765703.746042
Iteration count = 8, obj. fcn = 570288050.598123
Iteration count = 9, obj. fcn = 522961796.596876
Iteration count = 10, obj. fcn = 511715050.220222
Iteration count = 11, obj. fcn = 508958247.224516
Iteration count = 12, obj. fcn = 508068575.936013
Iteration count = 13, obj. fcn = 507653620.337242
Iteration count = 14, obj. fcn = 507403608.585660
Iteration count = 15, obj. fcn = 507230250.722202
Iteration count = 16, obj. fcn = 507099864.093833
Iteration count = 17, obj. fcn = 506996246.521362
Iteration count = 18, obj. fcn = 506910316.025933
Iteration count = 19, obj. fcn = 506836453.745377
Iteration count = 20, obj. fcn = 506770931.049373
Iteration count = 21, obj. fcn = 506711125.722502
Iteration count = 22, obj. fcn = 506655087.753533
Iteration count = 23, obj. fcn = 506601278.324459
Iteration count = 24, obj. fcn = 506548400.689189
Iteration count = 25, obj. fcn = 506495281.020750
Iteration count = 26, obj. fcn = 506440775.310936
Iteration count = 27, obj. fcn = 506383687.035679
Iteration count = 28, obj. fcn = 506322684.262175
Iteration count = 29, obj. fcn = 506256206.164045
Iteration count = 30, obj. fcn = 506182348.384318
Iteration count = 31, obj. fcn = 506098714.685410
Iteration count = 32, obj. fcn = 506002219.009518
Iteration count = 33, obj. fcn = 505888817.730675
Iteration count = 34, obj. fcn = 505753147.459398
Iteration count = 35, obj. fcn = 505588041.923305
Iteration count = 36, obj. fcn = 505383908.600425
Iteration count = 37, obj. fcn = 505127975.481272
Iteration count = 38, obj. fcn = 504803495.270954
Iteration count = 39, obj. fcn = 504389153.392342
Iteration count = 40, obj. fcn = 503859188.568163
Iteration count = 41, obj. fcn = 503185025.849711
Iteration count = 42, obj. fcn = 502339215.382560
Iteration count = 43, obj. fcn = 501301539.234614
Iteration count = 44, obj. fcn = 500065022.254598
Iteration count = 45, obj. fcn = 498638025.569707
Iteration count = 46, obj. fcn = 497041637.901745
Iteration count = 47, obj. fcn = 495309892.380920
Iteration count = 48, obj. fcn = 493504411.011703
Iteration count = 49, obj. fcn = 491740330.594869
Iteration count = 50, obj. fcn = 490186966.658044
Iteration count = 51, obj. fcn = 489000719.102514
Iteration count = 52, obj. fcn = 488229479.673981
Iteration count = 53, obj. fcn = 487797803.457282
Iteration count = 54, obj. fcn = 487582686.236997
Iteration count = 55, obj. fcn = 487483417.595469
Iteration count = 56, obj. fcn = 487439619.147063
Iteration count = 57, obj. fcn = 487420755.619724
Iteration count = 58, obj. fcn = 487412732.708124
Iteration count = 59, obj. fcn = 487409343.074871
Iteration count = 60, obj. fcn = 487407916.302842
Iteration count = 61, obj. fcn = 487407317.090009
Iteration count = 62, obj. fcn = 487407065.796087
Iteration count = 63, obj. fcn = 487406960.511468
Iteration count = 64, obj. fcn = 487406916.429281
Iteration count = 65, obj. fcn = 487406897.980584
Iteration count = 66, obj. fcn = 487406890.262037
Iteration count = 67, obj. fcn = 487406887.033444
Iteration count = 68, obj. fcn = 487406885.683138
Iteration count = 69, obj. fcn = 487406885.118459
Iteration count = 70, obj. fcn = 487406884.882321
Iteration count = 71, obj. fcn = 487406884.783584
Iteration count = 72, obj. fcn = 487406884.742300
Iteration count = 73, obj. fcn = 487406884.725041
Iteration count = 74, obj. fcn = 487406884.717818
Iteration count = 75, obj. fcn = 487406884.714800
Iteration count = 76, obj. fcn = 487406884.713537
Iteration count = 77, obj. fcn = 487406884.713011
Iteration count = 78, obj. fcn = 487406884.712788
Iteration count = 79, obj. fcn = 487406884.712699
Iteration count = 80, obj. fcn = 487406884.712659
Iteration count = 81, obj. fcn = 487406884.712641
Iteration count = 82, obj. fcn = 487406884.712634
Confusion_Matrix_FCM =
0 1 2 3 4 5
1 6 0 9 1536 12
2 0 2097 0 0 0
3 0 130 0 0 0
4 0 658 0 0 0
5 0 52 0 0 0
Confusion_Matrix_GRNN =
0 1 2 3 4 5
1 6 0 1102 432 23
2 0 2097 0 0 0
3 41 89 0 0 0
4 658 0 0 0 0
5 52 0 0 0 0
时间已过 4.366914 秒。
广义回归神经网络 GRNN(General Regression Neural Network)是基于径向基函数神经网络的一种改进。从结果上来看,它的结构与之前我们所讲过的径向基神经网络非常相似,区别就在于多了一层加和层,而去掉了隐含层与输出层的权值连接。而正因为GRNN没有权值这一说,所以不用训练的优势就体现在他的速度真的很快。而且曲线拟合的非常自然。样本精准度不如径向基精准,但在实际测试中表现甚至已经超越了BP神经网络。虽然GRNN看起来没有径向基精准,但实际在分类和拟合上,特别是数据精准度比较差的时候有着很大的优势。对本章内容感兴趣或者想充分学习了解的,建议去研习书中第三十四章节的内容。后期会对其中一些知识点在自己理解的基础上进行补充,欢迎大家一起学习交流。