在上一篇中我们简单整理了一下DQN的代码,这一篇则是解决连续状态,连续动作的问题----DDPG算法
这里使用了OU-noise,由于其参数较多,调试起来较为复杂,在仿真中也可以使用简单的高斯噪声代替。至于为什么原论文要使用Ornstein-Uhlenbeck噪声,小伙伴们可以看知乎上强化学习中Ornstein-Uhlenbeck噪声是鸡肋吗?一文。
简单来说,相比于独立噪声,OU噪声适合于惯性系统,尤其是时间离散化粒度较小的情况,此外,它可以保护实际系统,如机械臂
优化了代码框架,修正了一些小错误。不过DDPG毕竟是16年提出的算法,只能说是拿来入门使用,在实际项目中我们还需要一些更优秀的算法。因此之后打算更新一些做项目使用的DRL算法,最后会将所有代码上传到我的gihub中
import math
import random
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
import matplotlib.pyplot as plt
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
class ValueNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size ,init_w = 3e-3):
super(ValueNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, 1)
self.linear3.weight.data.uniform_(-init_w,init_w)
self.linear3.bias.data.uniform_(-init_w,init_w)
def forward(self, state, action):
x = torch.cat([state, action], 1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class PolicyNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w = 3e-3):
super(PolicyNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, num_actions)
# uniform_将tensor用从均匀分布中抽样得到的值填充。参数初始化
self.linear3.weight.data.uniform_(-init_w, init_w)
#也用用normal_(0, 0.1) 来初始化的,高斯分布中抽样填充,这两种都是比较有效的初始化方式
self.linear3.bias.data.uniform_(-init_w, init_w)
#其意义在于我们尽可能保持 每个神经元的输入和输出的方差一致。
#使用 RELU(without BN) 激活函数时,最好选用 He 初始化方法,将参数初始化为服从高斯分布或者均匀分布的较小随机数
#使用 BN 时,减少了网络对参数初始值尺度的依赖,此时使用较小的标准差(eg:0.01)进行初始化即可
#但是注意DRL中不建议使用BN
def forward(self, x):
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = F.tanh(self.linear3(x))
return x
def get_action(self, state):
state = torch.FloatTensor(state).unsqueeze(0).to(device)
action = self.forward(state)
return action.detach().cpu().numpy()[0,0]
class OUNoise(object):
def __init__(self, action_space, mu=0.0, theta = 0.15, max_sigma = 0.3, min_sigma = 0.3, decay_period = 100000):#decay_period要根据迭代次数合理设置
self.mu = mu
self.theta = theta
self.sigma = max_sigma
self.max_sigma = max_sigma
self.min_sigma = min_sigma
self.decay_period = decay_period
self.action_dim = action_space.shape[0]
self.low = action_space.low
self.high = action_space.high
self.reset()
def reset(self):
self.state = np.ones(self.action_dim) *self.mu
def evolve_state(self):
x = self.state
dx = self.theta* (self.mu - x) + self.sigma * np.random.randn(self.action_dim)
self.state = x + dx
return self.state
def get_action(self, action, t=0):
ou_state = self.evolve_state()
self.sigma = self.max_sigma - (self.max_sigma - self.min_sigma) * min(1.0, t / self.decay_period)
return np.clip(action + ou_state, self.low, self.high)
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch))
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)
class NormalizedActions(gym.ActionWrapper):
def action(self, action):
low_bound = self.action_space.low
upper_bound = self.action_space.high
action = low_bound + (action + 1.0) * 0.5 * (upper_bound - low_bound)
#将经过tanh输出的值重新映射回环境的真实值内
action = np.clip(action, low_bound, upper_bound)
return action
def reverse_action(self, action):
low_bound = self.action_space.low
upper_bound = self.action_space.high
#因为激活函数使用的是tanh,这里将环境输出的动作正则化到(-1,1)
action = 2 * (action - low_bound) / (upper_bound - low_bound) - 1
action = np.clip(action, low_bound, upper_bound)
return action
def plot(frame_idx, rewards):
plt.figure(figsize=(20,5))
plt.subplot(131)
plt.title('frame %s. reward: %s' % (frame_idx, rewards[-1]))
plt.plot(rewards)
plt.show()
class DDPG(object):
def __init__(self, action_dim, state_dim, hidden_dim):
super(DDPG,self).__init__()
self.action_dim, self.state_dim, self.hidden_dim = action_dim, state_dim, hidden_dim
self.batch_size = 128
self.gamma = 0.99
self.min_value = -np.inf
self.max_value = np.inf
self.soft_tau = 1e-2
self.replay_buffer_size = 5000
self.value_lr = 1e-3
self.policy_lr = 1e-4
self.value_net = ValueNetwork(state_dim, action_dim, hidden_dim).to(device)
self.policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim).to(device)
self.target_value_net = ValueNetwork(state_dim, action_dim, hidden_dim).to(device)
self.target_policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim).to(device)
for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()):
target_param.data.copy_(param.data)
for target_param, param in zip(self.target_policy_net.parameters(), self.policy_net.parameters()):
target_param.data.copy_(param.data)
self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=self.value_lr)
self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=self.policy_lr)
self.value_criterion = nn.MSELoss()
self.replay_buffer = ReplayBuffer(self.replay_buffer_size)
def ddpg_update(self):
state, action, reward, next_state, done = self.replay_buffer.sample(self.batch_size)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(device)
policy_loss = self.value_net(state, self.policy_net(state))
policy_loss = -policy_loss.mean()
next_action = self.target_policy_net(next_state)
target_value = self.target_value_net(next_state, next_action.detach())
expected_value = reward + (1.0 - done) * self.gamma * target_value
expected_value = torch.clamp(expected_value, self.min_value, self.max_value)
value = self.value_net(state, action)
value_loss = self.value_criterion(value, expected_value.detach())
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
self.value_optimizer.zero_grad()
value_loss.backward()
self.value_optimizer.step()
for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - self.soft_tau) + param.data * self.soft_tau
)
for target_param, param in zip(self.target_policy_net.parameters(), self.policy_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - self.soft_tau) + param.data * self.soft_tau
)
def main():
env = gym.make("Pendulum-v0")
env = NormalizedActions(env)
ou_noise = OUNoise(env.action_space)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
hidden_dim = 256
ddpg = DDPG(action_dim, state_dim, hidden_dim)
max_frames = 12000
max_steps = 500
frame_idx = 0
rewards = []
batch_size = 128
while frame_idx < max_frames:
state = env.reset()
ou_noise.reset()
episode_reward = 0
for step in range(max_steps):
env.render()
action = ddpg.policy_net.get_action(state)
action = ou_noise.get_action(action, step)
next_state, reward, done, _ = env.step(action)
ddpg.replay_buffer.push(state, action, reward, next_state, done)
if len(ddpg.replay_buffer) > batch_size:
ddpg.ddpg_update()
state = next_state
episode_reward += reward
frame_idx += 1
if frame_idx % max(1000, max_steps + 1) == 0:
plot(frame_idx, rewards)
if done:
break
rewards.append(episode_reward)
env.close()
if __name__ == '__main__':
main()