关注并星标
从此不迷路
计算机视觉研究院
公众号ID|ComputerVisionGzq
学习群|扫码在主页获取加入方式
代码地址: https://github. com/alibaba/EasyCV
计算机视觉研究院专栏
作者:Edison_G
最新阿里巴巴研究员,基于自研平台,对YoloX检测框架进行了改进,并且效率更快,超越了Yolov6和PP-YoloE等网络。
01
概述
EasyCV是阿里巴巴开源的基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具。EasyCV在阿里巴巴集团内支撑了搜索、淘系、优酷、飞猪等多个BU业务,同时也在阿里云上服务了若干企业客户,通过平台化组件的形式,满足客户自定定制化模型、解决业务问题的需求。
此外,基于PAI团队多年积累的深度学习训练、推理加速技术,在EasyCV中也集成了IO优化,模型训练加速、量化裁剪等功能,在性能上具备自己的优势。基于阿里云的PAI产品生态,用户可以方便地进行模型管理、在线服务部署、大规模离线推理任务。
将YOLO检测器切换为无锚方式,并采用其他先进的检测技术,即解耦头和领先的标签分配策略SimOTA,以在大范围的模型中实现最先进的结果:对于只有0.91M参数和1.08GFLOPs的YOLO Nano,我们在COCO上获得25.3%的AP,超过NanoDet 1.8%的AP;对于工业上使用最广泛的探测器之一YOLOv3,我们在COCO上将其AP提高到47.3%,比当前的最佳做法高出3.0%AP;对于与YOLOv4 CSP、YOLOv5-L参数量大致相同的YOLOX-L,我们在COCO上以68.9 FPS的速度在Tesla V100上实现了50.0%的AP,超过了YOLOv5-L 1.8%的AP。
考虑到EasyCV的一些特性:
丰富完善的自监督算法体系:囊括业界有代表性的图像自监督算法SimCLR, MoCO, Swav, Moby, DINO等,以及基于mask图像预训练方法MAE,同时提供了详细的benchmark工具及复现结果。
丰富的预训练模型库:提供丰富的预训练模型,在以transformer模型为主的基础上,也包含了主流的CNN 模型, 支持ImageNet预训练和自监督预训练。兼容PytorchImageModels支持更为丰富的视觉Transformer backbone。
易用性和可扩展性 :支持配置方式、API调用方式进行训练、评估、模型导出;框架采用主流的模块化设计,灵活可扩展。
高性能 :支持多机多卡训练和评估,fp16训练加速。针对自监督场景数据量大的特点,利用DALI和TFRecord文件进行IO方面的加速。对接阿里云机器学习PAI平台训练加速、模型推理优化。
研究者基于EasyCV引入了YoloX-PAI,各种实验得出了影响YoloX的元素,并且提供了PAI-Blade,一种简单的实现方式,用于加速基于BladeDISC和TensorRT的推理过程。
02
新框架
主干网络
新框架的主干网络还是引用Yolov6的,也是使用RepVGG-based,一个3x3卷积block代替multi-branch structure,有利于节约推理时间,并且提升了检测结果。
Neck
研究者使用了两种方式来提升Neck的性能,主要为:1)用于特征增强的自适应空间特征融合(ASFF)以及优化版本(ASFF-Sim);2)GSConv,一种轻量级的卷积块,主要为了降低计算成本。
Head
研究者主要通过注意力机制来增强检测头,借鉴了Transform框架中的机制,主要为了协调物体检测和分类两个分支的任务,上图已经展示了检测头,使用stem模块来加内存通道数,然后有一组类间卷积层来获取类间特征图,然后根据不同任务自适应获取超参数。
PAI-Blade
通过统一的流程在不同框架上自动完成多样化的优化策略
Performance: 优异的执行性能仍然是我们考虑的最主要问题;没有性能的优化工具,不拥有价值。
Generality: 广泛的通用性能够适配更多场景,同时提供更多的开发和部署自由。
支持 TensorFlow/PyTorch/ONNX
支持多样的加速硬件,包括 GPU/CPU/DCU 等等
支持不同的加速方案,BladeDISC/TensorRT/TVM/MNN 等等
Usability and Robustness: 易用性和鲁棒性能够降低用户的学习成本在生产系统中集成的成本。
统一的简洁的 API
最大程度的自动化
轻量的集成负担(仅需要几行代码)
PAI-Blade 和以往其他的工具主要的不同点在于它不仅仅考虑性能,而是更加强调性能、通用性、易用性与鲁棒性的协同设计。
03
实验
© THE END
转载请联系本公众号获得授权
计算机视觉研究院学习群等你加入!
我们开创“计算机视觉协会”知识星球两年有余,也得到很多同学的认可,最近我们又开启了知识星球的运营。我们定时会推送实践型内容与大家分享,在星球里的同学可以随时提问,随时提需求,我们都会及时给予回复及给出对应的答复。
ABOUT
计算机视觉研究院
计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!
VX:2311123606
往期推荐
Yolov7:最新最快的实时检测框架,最详细分析解释(附源代码)
打假Yolov7的精度,不是所有的论文都是真实可信
最新的目标检测的深度架构 | 参数少一半、速度快3倍+(文末福利)
SSD7 | 对嵌入式友好的目标检测网络,产品落地
精度提升方法:自适应Tokens的高效视觉Transformer框架(已开源)
ONNX 浅析:如何加速深度学习算法工程化?
劲爆!YOLOv6又快又准的目标检测框架开源啦(附源代码下载)
FastestDet:比yolov5更快!更强!全新设计的超实时Anchor-free目标检测算法(附源代码下载)
目前精度最高效率最快存储最小的目标检测模型(附源码下载)
CVPR小目标检测:上下文和注意力机制提升小目标检测(附论文下载)
Yolo系列的高效更精确的目标检测框架(附源代码)