机器学习笔记(通俗易懂)---决策树的集成算法介绍(7)---附完整代码

机器学习笔记—决策树的集成算法介绍(7)—附完整代码

以下都是本人在学习机器学习过程中的一些心得和笔记,仅供参考。


文章目录

  • 机器学习笔记---决策树的集成算法介绍(7)---附完整代码
  • 1.随机森林
    • 1.1构造随机森林
    • 1.2分析决策树
  • 2.梯度提升回归树(梯度提升机)
  • 3.优缺点和参数
      • 随机森林
      • 梯度提升回归树

集成ensemble)是合并多个机器学习模型来构建更强大模型的方法。

在机器学习文献中有许多模型都属于这一类,但已证明有两种集成模型对大量分类和回归的数据集都是有效的,二者都以决策树为基础,分别是随机森林random forest)和梯度提升决策树gradient boosted decision tree)。


1.随机森林

在上一篇文章写过,决策树的一个主要缺点在于经常对训练数据过拟合

  • 随机森林是解决这个问题的一种方法。
  • 随机森林本质上是许多决策树的集合,其中每棵树都和其他树略有不同
  • 随机森林背后的思想是,每棵树的预测可能都相对较好,但可能对部分数据过拟合
  • 如果构造很多树,并且每棵树的预测都很好,但都以不同的方式过拟合,那么我们可以对这些树的结果取平均值来降低过拟合
  • 既能减少过拟合又能保持树的预测能力,这可以在数学上严格证明。

为了实现这一策略,我们需要构造许多决策树。每棵树都应该对目标值做出可以接受的预测,还应该与其他树不同。随机森林的名字来自于将随机性添加到树的构造过程中,以确保每棵树都各不相同。随机森林中树的随机化方法有两种

  • 一种是通过选择用于构造树的数据点
  • 一种是通过选择每次划分测试的特征

1.1构造随机森林

想要构造一个随机森林模型,你需要确定用于构造的树的个数RandomForestRegressorRandomForestClassifiern_estimators参数)。

比如我们想要构造 10 棵树。这些树在构造时彼此完全独立,算法对每棵树进行不同的随机选择以确保树和树之间是有区别的。想要构造一棵树,首先要对数据进行自助采样(·bootstrap sample)

也就是说,从 n_samples个数据点中有放回地(即同一样本可以被多次抽取)重复随机抽取一个样本,共抽取n_samples次。

这样会创建一个与原数据集大小相同的数据集,但有些数据点会缺失(大约三分之一),有些会重复


举例说明,比如我们想要创建列表[‘a’, ‘b’, ‘c’, ‘d’] 的自助采样。一种可能的自主采样是 [‘b’, ‘d’, ‘d’, ‘c’]另一种可能的采样为[‘d’, ‘a’, ‘d’, ‘a’]

接下来,基于这个新创建的数据集来构造决策树。但是,要对我们在介绍决策树时描述的算法稍作修改。

在每个结点处,算法随机选择特征的一个子集,并对其中一个特征寻找最佳测试,而不是对每个结点都寻找最佳测试。

选择的特征个数由 max_features参数来控制。每个结点中特征子集的选择是相互独立的,这样树的每个结点可以使用特征的不同子集来做出决策

由于使用了自助采样,随机森林中构造每棵决策树的数据集都是略有不同的

由于每个结点的特征选择每棵树中的每次划分都是基于特征的不同子集

这两种方法共同保证随机森林中所有树都不相同


在这个过程中的一个关键参数max_features。如果我们设置 max_features等于n_features ,那么每次划分都要考虑数据集的所有特征,在特征选择的过程中没有添加随机性(不过自助采样依然存在随机性)。

如果设置max_features等于 1 ,那么在划分时将无法选择对哪个特征进行测试,只能对随机选择的某个特征搜索不同的阈值

因此,如果max_features较大,那么随机森林中的树将会十分相似,利用最独特的特征可以轻松拟合数据

如果 max_features 较小,那么随机森林中的树将会差异很大,为了很好地拟合数据,每棵树的深度都要很大

想要利用随机森林进行预测,算法首先对森林中的每棵树进行预测。

  • 对于回归问题,我们可以对这些结果取平均值作为最终预测
  • 对于分类问题,则用到了**“软投票”**(soft voting)策略,也就是说,每个算法做出“软”预测,给出每个可能的输出标签的概率。对所有树的预测概率取平均值,然后将概率最大的类别作为预测结果

1.2分析决策树

下面将由 5 棵树组成的随机森林应用到前面研究过的 two_moons数据集上:

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import mglearn
X,y = make_moons(n_samples=100, noise=0.25, random_state=3)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42)
forest = RandomForestClassifier(n_estimators=5, random_state=2)
forest.fit(X_train, y_train)

作为随机森林的一部分,树被保存在estimator_属性中。

我们将每棵树学习到的决策边界可视化,也将他们的总预测可视化:

fig, axes = plt.subplots(2, 3, figsize=(20, 10))
for i, (ax, tree) in enumerate(zip(axes.ravel(), forest.estimators_)):
    ax.set_title("Tree {}".format(i))
    mglearn.plots.plot_tree_partition(X_train, y_train, tree, ax=ax)
    
mglearn.plots.plot_2d_separator(forest, X_train, fill=True, ax=axes[-1, -1],
                                alpha=.4)
axes[-1, -1].set_title("Random Forest")
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)

机器学习笔记(通俗易懂)---决策树的集成算法介绍(7)---附完整代码_第1张图片

图为 决策边界可视化

我们可以清楚地看到,这 5 棵树学到的决策边界大不相同

每棵树都犯了一些错误,因为这里画出的一些训练点实际上并没有包含在这些树的训练集中,原因在于自助采样

  • 随机森林比单独每一棵树的过拟合都要小,给出的决策边界也更符合直觉
  • 在任何实际应用中,我们会用到更多棵树(通常是几百或上千),从而得到更平滑的边界

再举一个例子,我们将包含 100 棵树的随机森林应用在乳腺癌数据集上:

In

from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, 
	random_state=0)
forest = RandomForestClassifier(n_estimators=100, random_state=0)
forest.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(forest.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(forest.score(X_test, y_test)))

Out

Accuracy on training set: 1.000
Accuracy on test set: 0.972

与决策树类似,随机森林也可以给出特征重要性,计算方法是将森林中所有树的特征重要性求和并取平均

from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target,
	 random_state=0)
forest = RandomForestClassifier(n_estimators=100, random_state=0)
forest.fit(X_train, y_train)
def plot_feature_importance_cancer(model):
    n_features = cancer.data.shape[1]
    plt.barh(range(n_features), model.feature_importances_, align='center')
    plt.yticks(np.arange(n_features), cancer.feature_names)
    plt.xlabel("Feature importance")
    plt.ylabel("Feature")
    plt.show()
plot_feature_importance_cancer(forest)

机器学习笔记(通俗易懂)---决策树的集成算法介绍(7)---附完整代码_第2张图片

图为 拟合乳腺癌数据集得到的随机森林的特征重要性

可以发现,与单棵树相比,随机森林中有更多特征的重要性不为零。与单棵决策树类似,随机森林也给出worst radius(最大半径)特征很大的重要性.

但从总体来看,它实际上却选择worst perimeter(最大周长)作为信息量最大的特征

由于构造随机森林过程中的随机性,算法需要考虑多种可能的解释,结果就是随机森林比单棵树更能从总体把握数据的特征。


2.梯度提升回归树(梯度提升机)

梯度提升回归树是另一种集成方法,通过合并多个决策树来构建一个更为强大的模型。

  • 虽然名字中含有“回归”,但这个模型既可以用于回归也可以用于分类

与随机森林方法不同梯度提升采用连续的方式构造树,每棵树都试图纠正前一棵树的错误

默认情况下,梯度提升回归树中没有随机化,而是用到了强预剪枝

梯度提升树通常使用深度很小(1 到 5 之间)的树,这样模型占用的内存更少预测速度也更快

梯度提升背后的主要思想合并许多简单的模型(在这个语境中叫作弱学习器),比如深度较小的树。

每棵树只能对部分数据做出好的预测,因此,添加的树越来越多,可以不断迭代提高性能。

梯度提升树经常是机器学习竞赛的优胜者,并且广泛应用于业界。与随机森林相比,它通常对参数设置更为敏感,但如果参数设置正确的话,模型精度更高。

除了预剪枝与集成中树的数量之外,梯度提升的另一个重要参数learning_rate(学习率),用于控制每棵树纠正前一棵树的错误的强度较高的学习率意味着每棵树都可以做出较强的修正,这样模型更为复杂

通过增大 n_estimators 来向集成中添加更多树,也可以增加模型复杂度,因为模型有更多机会纠正训练集上的错误


下面是在乳腺癌数据集上应用 GradientBoostingClassifier 的示例。默认使用 100 棵树,最大深度是 3,学习率为 0.1:

In

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, 
	random_state=0) 
gbrt = GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))

Out

Accuracy on training set: 1.000
Accuracy on test set: 0.965

由于训练集精度达到 100%,所以很可能存在过拟合。为了降低过拟合,我们可以限制最大深度来加强预剪枝,也可以降低学习率

In

gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)#决策树深度为1
gbrt.fit(X_train,y_train)
 
print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))

Out

Accuracy on training set: 0.991
Accuracy on test set: 0.972

In

gbrt = GradientBoostingClassifier(random_state=0, learning_rate=0.01)#学习率为0.01
gbrt.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))

Out

Accuracy on training set: 0.988
Accuracy on test set: 0.965
  • 降低模型复杂度的两种方法都降低了训练集精度,这和预期相同。在这个例子中,减小树的最大深度显著提升了模型性能,而降低学习率仅稍稍提高了泛化性能。

对于其他基于决策树的模型,我们也可以将特征重要性可视化,以便更好地理解模型。由于我们用到了 100 棵树,所以即使所有树的深度都是 1,查看所有树也是不现实的:

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
import matplotlib.pyplot as plt
import numpy as np
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, 
	random_state=0)

gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)
gbrt.fit(X_train, y_train)

def plot_feature_importance_cancer(model):
    n_features = cancer.data.shape[1]
    plt.barh(range(n_features), model.feature_importances_, align='center')
    plt.yticks(np.arange(n_features), cancer.feature_names)
    plt.xlabel("Feature importance")
    plt.ylabel("Feature")
    plt.show()
plot_feature_importance_cancer(gbrt)

机器学习笔记(通俗易懂)---决策树的集成算法介绍(7)---附完整代码_第3张图片

图为 拟合乳腺癌数据集得到的梯度提升分类器给出的特征重要性

可以看到,梯度提升树的特征重要性与随机森林的特征重要性有些类似,不过梯度提升完全忽略了某些特征

由于梯度提升和随机森林两种方法在类似的数据上表现得都很好,因此一种常用的方法就是先尝试随机森林,它的鲁棒性很好

如果随机森林效果很好,但预测时间太长,或者机器学习模型精度小数点后第二位的提高也很重要,那么切换成梯度提升通常会有用。

如果想要将梯度提升应用在大规模问题上,可以研究一下 xgboost 包及其 Python接口,在写作本书时,这个库在许多数据集上的速度都比 scikit-learn对梯度提升的实现要快(有时调参也更简单)。


3.优缺点和参数

随机森林

这种方法非常强大,通常不需要反复调节参数就可以给出很好的结果,也不需要对数据进行缩放

从本质上看,随机森林拥有决策树的所有优点,同时弥补了决策树的一些缺陷。仍然使用决策树的一个原因是需要决策过程的紧凑表示。

基本上不可能对几十棵甚至上百棵树做出详细解释,随机森林中树的深度往往比决策树还要大(因为用到了特征子集)。

应该记住,随机森林本质上是随机的,设置不同的随机状态(或者不设置random_state参数)可以彻底改变构建的模型。森林中的树越多,它对随机状态选择的鲁棒性就越好。如果你希望结果可以重现,固定 random_state 是很重要的。

需要调节的重要参数有 n_estimatorsmax_features ,可能还包括预剪枝选项(如max_depth )。 n_estimators总是越大越好。对更多的树取平均可以降低过拟合,从而得到鲁棒性更好的集成。不过收益是递减的,而且树越多需要的内存也越多,训练时间也越长。常用的经验法则就是“在你的时间 / 内存允许的情况下尽量多”。

前文说过, max_features 决定每棵树的随机性大小,较小的max_features可以降低过拟合。一般来说,好的经验就是使用默认值:对于分类,默认值是max_features=sqrt(n_features);对于回归,默认值是 max_features=n_features。增大 max_features 或 max_leaf_nodes 有时也可以提高性能。它还可以大大降低用于训练和预测的时间和空间要求。


梯度提升回归树

与其他基于树的模型类似,这一算法不需要对数据进行缩放就可以表现得很好,而且也适用于二元特征与连续特征同时存在的数据集。

其主要缺点是需要仔细调参,而且训练时间可能会比较长

与其他基于树的模型相同,它也通常不适用于高维稀疏数据(1是训练时间慢,2是特征选择会浪费大量的有效特征)
梯度提升树模型的主要参数包括树的数量 n_estimators学习率 learning_rate ,后者用于控制每棵树对前一棵树的错误的纠正强度。

这两个参数高度相关,因为learning_rate 越低,就需要更多的树来构建具有相似复杂度的模型

随机森林的 n_estimators值总是越大越好,但梯度提升不同,增大 n_estimators 会导致模型更加复杂,进而可能导致过拟合

通常的做法是根据时间和内存的预算选择合适的n_estimators,然后对不同的learning_rate进行遍历;另一个重要参数是 max_depth(或 max_leaf_nodes),用于降低每棵树的复杂度。梯度提升模型的max_depth 通常都设置得很小,一般不超过 5。

制每棵树对前一棵树的错误的纠正强度。

这两个参数高度相关,因为learning_rate 越低,就需要更多的树来构建具有相似复杂度的模型

随机森林的 n_estimators值总是越大越好,但梯度提升不同,增大 n_estimators 会导致模型更加复杂,进而可能导致过拟合

通常的做法是根据时间和内存的预算选择合适的n_estimators,然后对不同的learning_rate进行遍历;另一个重要参数是 max_depth(或 max_leaf_nodes),用于降低每棵树的复杂度。梯度提升模型的max_depth 通常都设置得很小,一般不超过 5。

你可能感兴趣的:(机器学习笔记,python,决策树,算法,机器学习,人工智能)