链表剑指offer面试题

本文转载自:https://www.cnblogs.com/smyhvae/p/4782595.html

【正文】

这份笔记整理了整整一个星期,每一行代码都是自己默写完成,并测试运行成功,同时也回顾了一下《剑指offer》这本书中和链表有关的讲解,希望对笔试和面试有所帮助。OMG!

 

本文包含链表的以下内容:

  1、单链表的创建和遍历

  2、求单链表中节点的个数

  3、查找单链表中的倒数第k个结点(剑指offer,题15)

  4、查找单链表中的中间结点

  5、合并两个有序的单链表,合并之后的链表依然有序【出现频率高】(剑指offer,题17)

  6、单链表的反转【出现频率最高】(剑指offer,题16)

  7、从尾到头打印单链表(剑指offer,题5)

  8、判断单链表是否有环

  9、取出有环链表中,环的长度

  10、单链表中,取出环的起始点(剑指offer,题56)。本题需利用上面的第8题和第9题。

  11、判断两个单链表相交的第一个交点(剑指offer,题37)

 

此外,《剑指offer》中还有如下和链表相关的题目暂时还没有收录:(以后再收录)

剑指offer,题13:在O(1)时间删除链表结点

剑指offer,题26:复杂链表的复制

剑指offer,题45:圆圈中最后剩下的数字

剑指offer,题57:删除链表中

 

1、单链表的创建和遍历:

public class LinkList {
    public Node head;
    public Node current;

    //方法:向链表中添加数据
    public void add(int data) {
        //判断链表为空的时候
        if (head == null) {//如果头结点为空,说明这个链表还没有创建,那就把新的结点赋给头结点
            head = new Node(data);
            current = head;
        } else {
            //创建新的结点,放在当前节点的后面(把新的结点合链表进行关联)
            current.next = new Node(data);
            //把链表的当前索引向后移动一位
            current = current.next;   //此步操作完成之后,current结点指向新添加的那个结点
        }
    }

    //方法:遍历链表(打印输出链表。方法的参数表示从节点node开始进行遍历
    public void print(Node node) {
        if (node == null) {
            return;
        }

        current = node;
        while (current != null) {
            System.out.println(current.data);
            current = current.next;
        }
    }


    class Node {
        //注:此处的两个成员变量权限不能为private,因为private的权限是仅对本类访问。
        int data; //数据域
        Node next;//指针域

        public Node(int data) {
            this.data = data;
        }
    }


    public static void main(String[] args) {
        LinkList list = new LinkList();
        //向LinkList中添加数据
        for (int i = 0; i < 10; i++) {
            list.add(i);
        }

        list.print(list.head);// 从head节点开始遍历输出
    }

}

上方代码中,这里面的Node节点采用的是内部类来表示(33行)。使用内部类的最大好处是可以和外部类进行私有操作的互相访问

注:内部类访问的特点是:内部类可以直接访问外部类的成员,包括私有;外部类要访问内部类的成员,必须先创建对象。

为了方便添加和遍历的操作,在LinkList类中添加一个成员变量current,用来表示当前节点的索引(03行)。

这里面的遍历链表的方法(20行)中,参数node表示从node节点开始遍历,不一定要从head节点遍历。

2、求单链表中节点的个数:

  注意检查链表是否为空。时间复杂度为O(n)。这个比较简单。

核心代码:

//方法:获取单链表的长度
    public int getLength(Node head) {
        if (head == null) {
            return 0;
        }

        int length = 0;
        Node current = head;
        while (current != null) {
            length++;
            current = current.next;
        }

        return length;
    }

3、查找单链表中的倒数第k个结点:

3.1  普通思路:

先将整个链表从头到尾遍历一次,计算出链表的长度size,得到链表的长度之后,就好办了,直接输出第(size-k)个节点就可以了(注意链表为空,k为0,k为1,k大于链表中节点个数时的情况

)。时间复杂度为O(n),大概思路如下:

public int findLastNode(int index) {  //index代表的是倒数第index的那个结点

        //第一次遍历,得到链表的长度size
        if (head == null) {
            return -1;
        }

        current = head;
        while (current != null) {
            size++;
            current = current.next;
        }

        //第二次遍历,输出倒数第index个结点的数据
        current = head;
        for (int i = 0; i < size - index; i++) {
            current = current.next;
        }

        return current.data;
    }

如果面试官不允许你遍历链表的长度,该怎么做呢?接下来就是。

 

3.2  改进思路:(这种思路在其他题目中也有应用)

     这里需要声明两个指针:即两个结点型的变量first和second,首先让first和second都指向第一个结点,然后让second结点往后挪k-1个位置,此时first和second就间隔了k-1个位置,然后整体向后移动这两个节点,直到second节点走到最后一个结点的时候,此时first节点所指向的位置就是倒数第k个节点的位置。时间复杂度为O(n)

public Node findLastNode(Node head, int index) {

        if (node == null) {
            return null;
        }

        Node first = head;
        Node second = head;

        //让second结点往后挪index个位置
        for (int i = 0; i < index; i++) {
            second = second.next;
        }

        //让first和second结点整体向后移动,直到second结点为Null
        while (second != null) {
            first = first.next;
            second = second.next;
        }

        //当second结点为空的时候,此时first指向的结点就是我们要找的结点
        return first;
    }




代码实现:(最终版)(考虑k大于链表中结点个数时的情况时,抛出异常)

上面的代码中,看似已经实现了功能,其实还不够健壮:

  要注意k等于0的情况;

  如果k大于链表中节点个数时,就会报空指针异常,所以这里需要做一下判断。

核心代码如下:





public Node findLastNode(Node head, int k) {
        if (k == 0 || head == null) {
            return null;
        }

        Node first = head;
        Node second = head;

        //让second结点往后挪k-1个位置
        for (int i = 0; i < k - 1; i++) {
            System.out.println("i的值是" + i);
            second = second.next;
            if (second == null) { //说明k的值已经大于链表的长度了
                //throw new NullPointerException("链表的长度小于" + k); //我们自己抛出异常,给用户以提示
                return null;
            }
        }

        //让first和second结点整体向后移动,直到second走到最后一个结点
        while (second.next != null) {
            first = first.next;
            second = second.next;
        }

        //当second结点走到最后一个节点的时候,此时first指向的结点就是我们要找的结点
        return first;
    }

4、查找单链表中的中间结点:

同样,面试官不允许你算出链表的长度,该怎么做呢?

思路:

    和上面的第2节一样,也是设置两个指针first和second,只不过这里是,两个指针同时向前走,second指针每次走两步,first指针每次走一步,直到second指针走到最后一个结点时,此时first指针所指的结点就是中间结点。注意链表为空,链表结点个数为1和2的情况。时间复杂度为O(n)。

代码实现:

//方法:查找链表的中间结点
    public Node findMidNode(Node head) {

        if (head == null) {
            return null;
        }

        Node first = head;
        Node second = head;
        //每次移动时,让second结点移动两位,first结点移动一位
        while (second != null && second.next != null) {
            first = first.next;
            second = second.next.next;
        }
        
        //直到second结点移动到null时,此时first指针指向的位置就是中间结点的位置
        return first;
    }

上方代码中,当n为偶数时,得到的中间结点是第n/2 + 1个结点。比如链表有6个节点时,得到的是第4个节点。

 

5、合并两个有序的单链表,合并之后的链表依然有序:

    这道题经常被各公司考察。

例如:

链表1:

  1->2->3->4

链表2:

  2->3->4->5

合并后:

  1->2->2->3->3->4->4->5

解题思路:

  挨着比较链表1和链表2。

  这个类似于归并排序。尤其要注意两个链表都为空、和其中一个为空的情况。只需要O (1) 的空间。时间复杂度为O (max(len1,len2))

代码实现:

//两个参数代表的是两个链表的头结点
    public Node mergeLinkList(Node head1, Node head2) {

        if (head1 == null && head2 == null) {  //如果两个链表都为空
            return null;
        }
        if (head1 == null) {
            return head2;
        }
        if (head2 == null) {
            return head1;
        }

        Node head; //新链表的头结点
        Node current;  //current结点指向新链表

        // 一开始,我们让current结点指向head1和head2中较小的数据,得到head结点
        if (head1.data < head2.data) {
            head = head1;
            current = head1;
            head1 = head1.next;
        } else {
            head = head2;
            current = head2;
            head2 = head2.next;
        }

        while (head1 != null && head2 != null) {
            if (head1.data < head2.data) {
                current.next = head1;  //新链表中,current指针的下一个结点对应较小的那个数据
                current = current.next; //current指针下移
                head1 = head1.next;
            } else {
                current.next = head2;
                current = current.next;
                head2 = head2.next;
            }
        }

        //合并剩余的元素
        if (head1 != null) { //说明链表2遍历完了,是空的
            current.next = head1;
        }

        if (head2 != null) { //说明链表1遍历完了,是空的
            current.next = head2;
        }

        return head;
    }

代码测试

public static void main(String[] args) {
        LinkList list1 = new LinkList();
        LinkList list2 = new LinkList();
        //向LinkList中添加数据
        for (int i = 0; i < 4; i++) {
            list1.add(i);
        }

        for (int i = 3; i < 8; i++) {
            list2.add(i);
        }

        LinkList list3 = new LinkList();
        list3.head = list3.mergeLinkList(list1.head, list2.head); //将list1和list2合并,存放到list3中

        list3.print(list3.head);// 从head节点开始遍历输出
    }

6、单链表的反转:【出现频率最高】

例如链表:

  1->2->3->4

反转之后:

  4->3->2->1

思路:

  从头到尾遍历原链表,每遍历一个结点,将其摘下放在新链表的最前端。注意链表为空和只有一个结点的情况。时间复杂度为O(n)

//方法:链表的反转
    public Node reverseList(Node head) {

        //如果链表为空或者只有一个节点,无需反转,直接返回原链表的头结点
        if (head == null || head.next == null) {
            return head;
        }

        Node current = head;
        Node next = null; //定义当前结点的下一个结点
        Node reverseHead = null;  //反转后新链表的表头

        while (current != null) {
            next = current.next;  //暂时保存住当前结点的下一个结点,因为下一次要用

            current.next = reverseHead; //将current的下一个结点指向新链表的头结点
            reverseHead = current;  

            current = next;   // 操作结束后,current节点后移
        }

        return reverseHead;
    }




7、从尾到头打印单链表:

  对于这种颠倒顺序的问题,我们应该就会想到栈,后进先出。所以,这一题要么自己使用栈,要么让系统使用栈,也就是递归。注意链表为空的情况。时间复杂度为O(n)

  注:不要想着先将单链表反转,然后遍历输出,这样会破坏链表的结构,不建议。

//方法:从尾到头打印单链表
    public void reversePrint(Node head) {

        if (head == null) {
            return;
        }

        Stack stack = new Stack();  //新建一个栈
        Node current = head;

        //将链表的所有结点压栈
        while (current != null) {-
            stack.push(current);  //将当前结点压栈
            current = current.next;
        }

        //将栈中的结点打印输出即可
        while (stack.size() > 0) {
            System.out.println(stack.pop().data);  //出栈操作
        }
    }

方法2:(使用系统的栈:递归,代码优雅简洁)

public void reversePrint(Node head) {


        if (head == null) {
            return;
        }
        reversePrint(head.next);
        System.out.println(head.data);
    }

总结:方法2是基于递归实现的,戴安看起来简洁优雅,但有个问题:当链表很长的时候,就会导致方法调用的层级很深,有可能造成栈溢出。而方法1的显式用栈,是基于循环实现的,代码的鲁棒性要更好一些。

 

8、判断单链表是否有环:

  这里也是用到两个指针,如果一个链表有环,那么用一个指针去遍历,是永远走不到头的。

  因此,我们用两个指针去遍历:first指针每次走一步,second指针每次走两步,如果first指针和second指针相遇,说明有环。时间复杂度为O (n)。

方法:

//方法:判断单链表是否有环
    public boolean hasCycle(Node head) {

        if (head == null) {
            return false;
        }

        Node first = head;
        Node second = head;

        while (second != null) {
            first = first.next;   //first指针走一步
            second = second.next.next;  second指针走两步

            if (first == second) {  //一旦两个指针相遇,说明链表是有环的
                return true;
            }
        }

        return false;
    }

完整版代码:(包含测试部分) 

这里,我们还需要加一个重载的add(Node node)方法,在创建单向循环链表时要用到。

LinkList.java:







public class LinkList {
    public Node head;
    public Node current;

    //方法:向链表中添加数据
    public void add(int data) {
        //判断链表为空的时候
        if (head == null) {//如果头结点为空,说明这个链表还没有创建,那就把新的结点赋给头结点
            head = new Node(data);
            current = head;
        } else {
            //创建新的结点,放在当前节点的后面(把新的结点合链表进行关联)
            current.next = new Node(data);
            //把链表的当前索引向后移动一位
            current = current.next;
        }
    }


    //方法重载:向链表中添加结点
    public void add(Node node) {
        if (node == null) {
            return;
        }

        if (head == null) {
            head = node;
            current = head;
        } else {
            current.next = node;
            current = current.next;
        }
    }


    //方法:遍历链表(打印输出链表。方法的参数表示从节点node开始进行遍历
    public void print(Node node) {
        if (node == null) {
            return;
        }

        current = node;
        while (current != null) {
            System.out.println(current.data);
            current = current.next;
        }
    }

    //方法:检测单链表是否有环
    public boolean hasCycle(Node head) {

        if (head == null) {
            return false;
        }

        Node first = head;
        Node second = head;

        while (second != null) {
            first = first.next;  //first指针走一步
            second = second.next.next;  //second指针走两步

            if (first == second) {  //一旦两个指针相遇,说明链表是有环的
                return true;
            }
        }

        return false;
    }

    class Node {
        //注:此处的两个成员变量权限不能为private,因为private的权限是仅对本类访问。
        int data; //数据域
        Node next;//指针域

        public Node(int data) {
            this.data = data;
        }
    }

    public static void main(String[] args) {
        LinkList list = new LinkList();
        //向LinkList中添加数据
        for (int i = 0; i < 4; i++) {
            list.add(i);
        }

        list.add(list.head);  //将头结点添加到链表当中,于是,单链表就有环了。备注:此时得到的这个环的结构,是下面的第8小节中图1的那种结构。

        System.out.println(list.hasCycle(list.head));
    }
}

检测单链表是否有环的代码是第50行。

88行:我们将头结点继续往链表中添加,此时单链表就环了。最终运行效果为true。

如果删掉了88行代码,此时单链表没有环,运行效果为false。

 

9、取出有环链表中,环的长度:

我们平时碰到的有环链表是下面的这种:(图1

d28e487b-e5c1-4f4b-99a0-7c5d3d0e7b20

上图中环的长度是4。

但有可能也是下面的这种:(图2

062fff31-70cc-45fe-aef8-80ed6d51b666

此时,上图中环的长度就是3了。

那怎么求出环的长度呢?

思路:

    这里面,我们需要先利用上面的第7小节中的hasCycle方法(判断链表是否有环的那个方法),这个方法的返回值是boolean型,但是现在要把这个方法稍做修改,让其返回值为相遇的那个结点。然后,我们拿到这个相遇的结点就好办了,这个结点肯定是在环里嘛,我们可以让这个结点对应的指针一直往下走,直到它回到原点,就可以算出环的长度了。

方法:

//方法:判断单链表是否有环。返回的结点是相遇的那个结点
    public Node hasCycle(Node head) {

        if (head == null) {
            return null;
        }

        Node first = head;
        Node second = head;

        while (second != null) {
            first = first.next;
            second = second.next.next;

            if (first == second) {  //一旦两个指针相遇,说明链表是有环的
                return first;  //将相遇的那个结点进行返回
            }
        }

        return null;
    }

    //方法:有环链表中,获取环的长度。参数node代表的是相遇的那个结点
    public int getCycleLength(Node node) {

        if (head == null) {
            return 0;
        }

        Node current = node;
        int length = 0;

        while (current != null) {
            current = current.next;
            length++;
            if (current == node) {  //当current结点走到原点的时候
                return length;
            }
        }

        return length;
    }

包括测试部分

public class LinkList {
    public Node head;
    public Node current;

    public int size;

    //方法:向链表中添加数据
    public void add(int data) {
        //判断链表为空的时候
        if (head == null) {//如果头结点为空,说明这个链表还没有创建,那就把新的结点赋给头结点
            head = new Node(data);
            current = head;
        } else {
            //创建新的结点,放在当前节点的后面(把新的结点合链表进行关联)
            current.next = new Node(data);
            //把链表的当前索引向后移动一位
            current = current.next;   //此步操作完成之后,current结点指向新添加的那个结点
        }
    }


    //方法重载:向链表中添加结点
    public void add(Node node) {
        if (node == null) {
            return;
        }
        if (head == null) {
            head = node;
            current = head;
        } else {
            current.next = node;
            current = current.next;
        }
    }


    //方法:遍历链表(打印输出链表。方法的参数表示从节点node开始进行遍历
    public void print(Node node) {
        if (node == null) {
            return;
        }

        current = node;
        while (current != null) {
            System.out.println(current.data);
            current = current.next;
        }
    }

    //方法:判断单链表是否有环。返回的结点是相遇的那个结点
    public Node hasCycle(Node head) {

        if (head == null) {
            return null;
        }

        Node first = head;
        Node second = head;

        while (second != null) {
            first = first.next;
            second = second.next.next;

            if (first == second) {  //一旦两个指针相遇,说明链表是有环的
                return first;  //将相遇的那个结点进行返回
            }
        }

        return null;
    }

    //方法:有环链表中,获取环的长度。参数node代表的是相遇的那个结点
    public int getCycleLength(Node node) {

        if (head == null) {
            return 0;
        }

        Node current = node;
        int length = 0;

        while (current != null) {
            current = current.next;
            length++;
            if (current == node) {  //当current结点走到原点的时候
                return length;
            }
        }

        return length;
    }

    class Node {
        //注:此处的两个成员变量权限不能为private,因为private的权限是仅对本类访问。
        int data; //数据域
        Node next;//指针域

        public Node(int data) {
            this.data = data;
        }
    }


    public static void main(String[] args) {
        LinkList list1 = new LinkList();

        Node second = null; //把第二个结点记下来

        //向LinkList中添加数据
        for (int i = 0; i < 4; i++) {
            list1.add(i);

            if (i == 1) {
                second = list1.current;  //把第二个结点记下来
            }
        }

        list1.add(second);   //将尾结点指向链表的第二个结点,于是单链表就有环了,备注:此时得到的环的结构,是本节中图2的那种结构
        Node current = list1.hasCycle(list1.head);  //获取相遇的那个结点

        System.out.println("环的长度为" + list1.getCycleLength(current));
    }

}

 运行效果:

0d5dd16d-69fb-43b4-a99f-32c7c0a7a624

如果将上面的104至122行的测试代码改成下面这样的:(即:将图2中的结构改成图1中的结构)

public static void main(String[] args) {
        LinkList list1 = new LinkList();
        //向LinkList中添加数据
        for (int i = 0; i < 4; i++) {
            list1.add(i);
        }

        list1.add(list1.head); //将头结点添加到链表当中(将尾结点指向头结点),于是,单链表就有环了。备注:此时得到的这个环的结构,是本节中图1的那种结构。

        Node current = list1.hasCycle(list1.head);

        System.out.println("环的长度为" + list1.getCycleLength(current)); 
    }

运行结果:

703c26a6-a04c-450a-9fb7-00fa92a3eb79

如果把上面的代码中的第8行删掉,那么这个链表就没有环了,于是运行的结果为0。

 

10、单链表中,取出环的起始点:

我们平时碰到的有环链表是下面的这种:(图1

d28e487b-e5c1-4f4b-99a0-7c5d3d0e7b20[1]

上图中环的起始点1。

但有可能也是下面的这种:(图2

062fff31-70cc-45fe-aef8-80ed6d51b666[1]

此时,上图中环的起始点是2。

方法1:

  这里我们需要利用到上面第8小节的取出环的长度的方法getCycleLength,用这个方法来获取环的长度length。拿到环的长度length之后,需要用到两个指针变量first和second,先让second指针走length步;然后让first指针和second指针同时各走一步,当两个指针相遇时,相遇时的结点就是环的起始点。

:为了找到环的起始点,我们需要先获取环的长度,而为了获取环的长度,我们需要先判断是否有环。所以这里面其实是用到了三个方法

代码实现:

方法1的核心代码:

//方法:获取环的起始点。参数length表示环的长度
    public Node getCycleStart(Node head, int cycleLength) {

        if (head == null) {
            return null;
        }

        Node first = head;
        Node second = head;
        //先让second指针走length步
        for (int i = 0; i < cycleLength; i++) {
            second = second.next;
        }

        //然后让first指针和second指针同时各走一步
        while (first != null && second != null) {
            first = first.next;
            second = second.next;

            if (first == second) { //如果两个指针相遇了,说明这个结点就是环的起始点
                return first;
            }
        }

        return null;
    }

完整版代码:(含测试部分)

public class LinkList {
    public Node head;
    public Node current;

    public int size;

    //方法:向链表中添加数据
    public void add(int data) {
        //判断链表为空的时候
        if (head == null) {//如果头结点为空,说明这个链表还没有创建,那就把新的结点赋给头结点
            head = new Node(data);
            current = head;
        } else {
            //创建新的结点,放在当前节点的后面(把新的结点合链表进行关联)
            current.next = new Node(data);
            //把链表的当前索引向后移动一位
            current = current.next;   //此步操作完成之后,current结点指向新添加的那个结点
        }
    }


    //方法重载:向链表中添加结点
    public void add(Node node) {
        if (node == null) {
            return;
        }
        if (head == null) {
            head = node;
            current = head;
        } else {
            current.next = node;
            current = current.next;
        }
    }


    //方法:遍历链表(打印输出链表。方法的参数表示从节点node开始进行遍历
    public void print(Node node) {
        if (node == null) {
            return;
        }

        current = node;
        while (current != null) {
            System.out.println(current.data);
            current = current.next;
        }
    }


    //方法:判断单链表是否有环。返回的结点是相遇的那个结点
    public Node hasCycle(Node head) {

        if (head == null) {
            return null;
        }

        Node first = head;
        Node second = head;

        while (second != null) {
            first = first.next;
            second = second.next.next;

            if (first == second) {  //一旦两个指针相遇,说明链表是有环的
                return first;  //将相遇的那个结点进行返回
            }
        }

        return null;
    }
    //方法:有环链表中,获取环的长度。参数node代表的是相遇的那个结点
    public int getCycleLength(Node node) {

        if (head == null) {
            return 0;
        }

        Node current = node;
        int length = 0;

        while (current != null) {
            current = current.next;
            length++;
            if (current == node) {  //当current结点走到原点的时候
                return length;
            }
        }

        return length;
    }

    //方法:获取环的起始点。参数length表示环的长度
    public Node getCycleStart(Node head, int cycleLength) {

        if (head == null) {
            return null;
        }

        Node first = head;
        Node second = head;
        //先让second指针走length步
        for (int i = 0; i < cycleLength; i++) {
            second = second.next;
        }

        //然后让first指针和second指针同时各走一步
        while (first != null && second != null) {
            first = first.next;
            second = second.next;

            if (first == second) { //如果两个指针相遇了,说明这个结点就是环的起始点
                return first;
            }
        }

        return null;
    }

    class Node {
        //注:此处的两个成员变量权限不能为private,因为private的权限是仅对本类访问。
        int data; //数据域
        Node next;//指针域

        public Node(int data) {
            this.data = data;
        }
    }


    public static void main(String[] args) {
        LinkList list1 = new LinkList();

        Node second = null; //把第二个结点记下来

        //向LinkList中添加数据
        for (int i = 0; i < 4; i++) {
            list1.add(i);

            if (i == 1) {
                second = list1.current;  //把第二个结点记下来
            }
        }

        list1.add(second);   //将尾结点指向链表的第二个结点,于是单链表就有环了,备注:此时得到的环的结构,是本节中图2的那种结构
        Node current = list1.hasCycle(list1.head);  //获取相遇的那个结点

        int length = list1.getCycleLength(current); //获取环的长度

        System.out.println("环的起始点是" + list1.getCycleStart(list1.head, length).data);

    }

}

11、判断两个单链表相交的第一个交点:

  《剑指offer》P193,5.3,面试题37就有这道题。

  面试时,很多人碰到这道题的第一反应是:在第一个链表上顺序遍历每个结点,每遍历到一个结点的时候,在第二个链表上顺序遍历每个结点。如果在第二个链表上有一个结点和第一个链表上的结点一样,说明两个链表在这个结点上重合。显然该方法的时间复杂度为O(len1 * len2)。

方法1:采用栈的思路

    我们可以看出两个有公共结点而部分重合的链表,拓扑形状看起来像一个Y,而不可能是X型。 如下图所示:   

ff56631d-76e3-44f9-a32b-cae01e5307e6

如上图所示,如果单链表有公共结点,那么最后一个结点(结点7)一定是一样的,而且是从中间的某一个结点(结点6)开始,后续的结点都是一样的。

现在的问题是,在单链表中,我们只能从头结点开始顺序遍历,最后才能到达尾结点。最后到达的尾节点却要先被比较,这听起来是不是像“先进后出”?于是我们就能想到利用栈的特点来解决这个问题:分别把两个链表的结点放入两个栈中,这样两个链表的尾结点就位于两个栈的栈顶,接下来比较下一个栈顶,直到找到最后一个相同的结点

这种思路中,我们需要利用两个辅助栈,空间复杂度是O(len1+len2),时间复杂度是O(len1+len2)。和一开始的蛮力法相比,时间效率得到了提高,相当于是利用空间消耗换取时间效率

那么,有没有更好的方法呢?接下来要讲。

 

方法2:判断两个链表相交的第一个结点:用到快慢指针,推荐(更优解)

我们在上面的方法2中,之所以用到栈,是因为我们想同时遍历到达两个链表的尾结点。其实为解决这个问题我们还有一个更简单的办法:首先遍历两个链表得到它们的长度。在第二次遍历的时候,在较长的链表上走 |len1-len2| 步,接着再同时在两个链表上遍历,找到的第一个相同的结点就是它们的第一个交点

这种思路的时间复杂度也是O(len1+len2),但是我们不再需要辅助栈,因此提高了空间效率。当面试官肯定了我们的最后一种思路的时候,就可以动手写代码了。

核心代码

//方法:求两个单链表相交的第一个交点
    public Node getFirstCommonNode(Node head1, Node head2) {
        if (head1 == null || head == null) {
            return null;
        }

        int length1 = getLength(head1);
        int length2 = getLength(head2);
        int lengthDif = 0;  //两个链表长度的差值

        Node longHead;
        Node shortHead;

        //找出较长的那个链表
        if (length1 > length2) {
            longHead = head1;
            shortHead = head2;
            lengthDif = length1 - length2;
        } else {
            longHead = head2;
            shortHead = head1;
            lengthDif = length2 - length1;
        }

        //将较长的那个链表的指针向前走length个距离
        for (int i = 0; i < lengthDif; i++) {
            longHead = longHead.next;
        }

        //将两个链表的指针同时向前移动
        while (longHead != null && shortHead != null) {
            if (longHead == shortHead) { //第一个相同的结点就是相交的第一个结点
                return longHead;
            }
            longHead = longHead.next;
            shortHead = shortHead.next;
        }

        return null;
    }


    //方法:获取单链表的长度
    public int getLength(Node head) {
        if (head == null) {
            return 0;
        }

        int length = 0;
        Node current = head;
        while (current != null) {

            length++;
            current = current.next;
        }

        return length;

 

你可能感兴趣的:(Java)