神经网络训练数据集大小,神经网络输入图片大小

卷积神经网络 测试图像和 训练图像 大小要一样吗

这取决于你的卷积神经网络中是否存在全连接层,因为不同于全连接层,卷积神经网络中的参数是卷积核的权重,与输入大小无关。

如果是全卷积网络,那么对于输入的图像分辨率要求不高,可以大小随意,不过多少应该会有影响。不过如果其中含有全连接层就需要保证输入图像大小一致,可以通过线性插值的方式进行放缩。

谷歌人工智能写作项目:神经网络伪原创

神经网络训练时为什么用224*224的图像块

已经过了两年了文案狗。。。。

感觉你现在应该明白了,所以我只是说一下我自己的理解就当作是一种探讨和交流把,其实图片的尺寸对于卷积conv和池化pool来说是没有要求的,但是在早期,我们没有空间金字塔池化之前(spp)我们采取的神经网路的做法是n个卷积和x个池化最后跟着全连接,由于全连接是固定大小的也就是说全连接的参数是一定的,这就需要确保前面的size或者所到全连接之前的feature map的大小是需要固定的,从最底层向上一直推导到input层,那么图片的大小也就是一定的了,不是说一定要用这个size的,其实你只要将最后的全连接改了,什么size都可以了。

神经网络训练过程中图片像素对训练结果有什么影响,由于GPU内存太小,将224*224改成了120*120

有影响 像素越高相对需要的网络结构更复杂 优化技术更好 训练时间更长 超参数的设置等就好比CIFAR数据集和ImageNet数据集 面对的数据集不同 上述的组件都要相应发生变化GPU太小的话 可以考虑图像降采样、batch_size设置小一点、网络结构适当压缩等。

bp神经网络训练能支持100张图片吗?

卷积神经网络里输入图像大小何时是固定,何时是任意

卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。

2、基于卷积网络的人脸检测卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。

它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。

3、文字识别系统在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。

然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

本人新手,在做BP神经网络的时候遇到了一个问题 5

不知你是不是用matlab的神经网络工具箱,因为一般神经网络都是成批处理的,每一次调整都会综合所有样本的误差进行调整,而不是一类一类图片的去调整,所以不会出现你说的现象。

目前我看过的很多C++或者其它语言自己写的神经网络,都会有这样或那样的理解错误,建议先使用现成的matlab的神经网络工具箱进行训练。另外是输入的问题,图象一般会先提取特征,再将特征作为输入。

你在贴吧也提问了吧,这个我在贴吧里也回答了。

输出的问题,一般模式识别会用 0 1向量来代表,例如你有三类,目标输出应该是[ 0 1 0]这样,来代表它是第2类, 训练的时候用 0 1 0,当然,预测到的可能是[ 0.1 0.9 0.1]这样。

这是我所想到的问题,楼主看看是不是这样一回事。下面是我的一些建议:改为用神经网络工具箱。借鉴《 MATLAB神经网络原理与实例精解 》里的 基于概率神经网络的手写体数字识别 ,对图象作预处理。

参考2012Bmatlab \R2012b\toolbox\nnet\nndemos下的classify_crab_demo例子。调用patternnet建立模式识别网络。

可以到 《神经网络之家》  学习神经网络。

 

你可能感兴趣的:(神经网络,深度学习,计算机视觉,算法)