Pytorch深度卷积神经网络AlexNet

深度卷积神经网络AlexNet

AlexNet网络用于MNIST手写数字识别,泛化性能测试acc_g=0.569,相较于MLP、LeNet所有提升

完整训练代码见 >>Github链接

class AlexNet(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.sequential = nn.Sequential(nn.Conv2d(1,96,kernel_size=11,stride=4,padding=1),nn.ReLU(),
                                        nn.MaxPool2d(kernel_size=3,stride=2),
                                        nn.Conv2d(96,256,kernel_size=5,padding=2),nn.ReLU(),
                                        nn.MaxPool2d(kernel_size=3,stride=2),
                                        nn.Conv2d(256,384,kernel_size=3,padding=1),nn.ReLU(),
                                        nn.Conv2d(384,384,kernel_size=3,padding=1),nn.ReLU(),
                                        nn.Conv2d(384,256,kernel_size=3,padding=1),nn.ReLU(),
                                        nn.MaxPool2d(kernel_size=3,stride=2),
                                        nn.Flatten(),
                                        nn.Linear(6400,4096),nn.ReLU(),
                                        nn.Dropout(p=0.5),
                                        nn.Linear(4096,4096),nn.ReLU(),
                                        nn.Dropout(p=0.5),
                                        nn.Linear(4096,10))
        
    
    def forward(self,x):
        return self.sequential(x)

你可能感兴趣的:(pytorch,cnn,深度学习)