- 【Linux】learning notes(4)cat、more、less、head、tail、vi、vim
bryant_meng
ServerConfig/Toolslinuxlessvimtailmore
文章目录catmore查看整个文件less查看整个文件head查看部分文件tail查看部分文件vim/vicatcat命令在Linux和Unix系统中非常常用,它用于连接文件并打印到标准输出设备(通常是屏幕)。虽然cat的基本用法很简单,但它也支持一些参数来提供额外的功能。-n或--number:对所有输出的行进行编号。示例:cat-nfile.txt这会显示file.txt的内容,并在每行的开头
- 机器学习——正则化、欠拟合、过拟合、学习曲线
代码的建筑师
学习记录机器学习机器学习学习曲线过拟合欠拟合正则化
过拟合(overfitting):模型只能拟合训练数据的状态。即过度训练。避免过拟合的几种方法:①增加全部训练数据的数量(最为有效的方式)②使用简单的模型(简单的模型学不够,复杂的模型学的太多),这里的简单指的是不要过于复杂③正则化(对目标函数后加上正则化项):使得这个“目标函数+正则化项”的值最小,即为正则化,用防止参数变得过大(参数值变小,意味着对目标函数的影响变小),λ是正则化参数,代表正则
- 了解状态机
Mcband
java
前言状态机(StateMachine)是一种数学模型,用于描述系统或程序在不同状态之间转换的行为。它由一组状态、转移条件和动作组成。一、什么是状态机?状态机可以被看作是一个抽象的机器,它可以处于不同的状态,并根据输入条件执行相应的动作来改变状态。状态表示了系统或程序所处的特定情况或阶段,而转移条件决定了在何种条件下从一个状态转移到另一个状态,动作则表示在状态转移时要执行的操作。二、状态机的实例一个
- 从过拟合到强化学习:机器学习核心知识全解析
吴师兄大模型
0基础实现机器学习入门到精通机器学习人工智能过拟合强化学习pythonLLMscikit-learn
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 利用matlab实现贝叶斯优化算法(BO)优化支持向量机回归(SVR)的超参数
是内啡肽耶
算法matlab支持向量机机器学习回归
【导读】在机器学习建模中,支持向量机(SVM)回归模型的效果高度依赖超参数选择。但手动调参就像"大海捞针",而网格搜索又面临"计算爆炸"的难题。今天给大家介绍一个智能调参黑科技——贝叶斯优化算法。通过Matlab实现,只需几分钟就能让模型性能自动升级!一、为什么要用贝叶斯优化调参?传统调参三大痛点:C参数(正则化强度):过小导致过拟合,过大削弱模型能力ε参数(不敏感区域):决定对预测误差的容忍度核
- 强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)
wxchyy
强化学习算法
目录前言前期回顾一、SARSA算法二、Q-Learning算法三、总结总结前言 前两期我们介绍了动态规划算法,还有蒙特卡洛算法,不过它们对于状态价值函数的估值都有其缺陷性,像动态规划,需要从最下面向上进行递推,而蒙特克洛则需要一个Episode(回合)结束才能对其进行估值,有没有更直接的方法,智能体能边做动作,边估值一次,不断学习策略?答案是有的。这就是本期需要介绍的算法,时间差分法(TimeDi
- 深度学习 Deep Learning 第2章 线性代数
odoo中国
AI编程人工智能深度学习线性代数人工智能
深度学习第2章线性代数线性代数是深度学习的语言。张量操作是神经网络计算的基石,矩阵乘法是前向传播的核心,范数约束模型复杂度,而生成空间理论揭示模型表达能力的本质。本章介绍线性代数的基本内容,为进一步学习深度学习做准备。主要内容2.1标量、向量、矩阵和张量标量:单个数字,用斜体表示,通常赋予小写字母变量名。向量:数字数组,按顺序排列,用粗体小写字母表示,元素通过下标访问。矩阵:二维数字数组,用粗体大
- TidyBot++:用于机器人学习开源的完整移动机械手
三谷秋水
计算机视觉智能体人工智能机器人开源人工智能机器学习深度学习
24年12月来自普林斯顿、斯坦福和dexterity.ai的论文“TidyBot++:AnOpen-SourceHolonomicMobileManipulatorforRobotLearning”。要充分利用模仿学习在移动机械操作方面的最新进展,需要收集大量人工引导的演示。本文提出一种开源设计,用于设计一种廉价、坚固、灵活的移动机械手,该机械手可支撑任意臂,从而实现各种现实世界的家用移动机械操作
- 《数据挖掘导论》 第二章数据
爱吃草莓的西瓜酱
数据挖掘导论数据挖掘
第二章数据数据类型数据质量数据预处理相似度测量数据Collectionofdataobjectsandtheirattributes特征值数值型的或者描述性的(男/女-->0/1)特征和特征值之间的区别:相同的属性可能被赋予不同的特征值,如身高的单位可能是米或者英尺不同的属性可以映射到相同的值集,如ID是无界的,age有最大值和最小值1.特征的类型Nominal(标称)Examples:IDnum
- TPAMI 2024 | 学习人类教育智慧:以学生为中心的知识蒸馏方法
小白学视觉
论文解读IEEETPAMI知识蒸馏TPAMI论文解读深度学习
题目:LearningFromHumanEducationalWisdom:AStudent-CenteredKnowledgeDistillationMethod学习人类教育智慧:以学生为中心的知识蒸馏方法作者:S.Yang;J.Yang;M.Zhou;Z.Huang;W.-S.Zheng;X.Yang;J.Ren摘要现有的知识蒸馏研究通常侧重于以教师为中心的方法,其中教师网络根据自身标准进行训
- Manus开源平替-开源通用智能体
galileo2016
人工智能
原文链接:https://i68.ltd/notes/posts/250306-opensource-agi-agent/OWL-比Manus还强的全能开源AgentOWL:OptimizedWorkforceLearningforGeneralMulti-AgentAssistanceinReal-WorldTaskAutomation,现实世界中执行自动化任务的通用多代理辅助优化学习框架项目仓
- 训练模型时,步长为什么不能太大也不能太小?
yuanpan
人工智能
在训练模型时,步长(也称为学习率,LearningRate)是一个关键的超参数,它控制着每次参数更新的大小。步长既不能太大,也不能太小,原因如下:1.步长太大的问题如果步长过大,会导致以下问题:模型发散(Divergence):参数更新幅度过大,可能导致损失函数的值不断增大,甚至无法收敛,模型性能急剧下降。错过最优解:过大的步长可能导致参数在最优解附近震荡,甚至直接跳过最优解,无法找到良好的模型参
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- KVM安全模块生产环境配置与优化指南
TechStack 创行者
#服务器容器Linux服务器运维安全kvmSELinux
KVM安全模块生产环境配置与优化指南一、引言在当今复杂多变的网络安全环境下,生产环境中KVM(Kernel-basedVirtualMachine)的安全配置显得尤为重要。本指南旨在详细阐述KVM安全模块的配置方法,结合强制访问控制(MAC)、硬件隔离及合规性要求,为您提供全面且深入的操作建议,确保KVM环境的安全性和稳定性。二、SELinux安全模块配置1.基础策略配置SELinux(Secur
- 数据架构与机器学习:如何构建智能系统
AI天才研究院
AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习(MachineLearning)是一种使计算机程序在未被明确编程的情况下,通过经验的学习自动改善其行为的技术。机器学习的目标是使计算机能够自主地从数据中学习,以便在未来的问题中做出更好的决策。数据架构(DataArchitecture)是一种用于有效管理、存储和处理数据的系统结构和组件。数据架构涉及到数据的收集、存储、处理和分析,以及数据的存储和传输。数据架构是构建智能系统的
- 信息检索系统评估指标的层级分析:从单点精确度到整体性能度量
人工智能深度学习llm检索系统
在构建搜索引擎系统时,有效的评估机制是保证系统质量的关键环节。当用户输入查询词如"machinelearningtutorialspython",系统返回结果列表后,如何客观评估这些结果的相关性和有效性?这正是信息检索评估指标的核心价值所在。分析用户与搜索引擎的交互模式,我们可以观察到以下行为特征:用户主要关注结果列表的前几项对顶部结果的关注度显著高于底部结果用户基于多次搜索体验形成对搜索系统整体
- AI推介-大语言模型LLMs论文速览(arXiv方向):2024.06.25-2024.07.01
小小帅AIGC
LLMs论文时报人工智能语言模型深度学习自然语言处理大语言模型LLM
文章目录~1.AutoCherry-Picker:LearningfromHigh-qualityGenerativeDataDrivenbyLanguage2.BioMNER:ADatasetforBiomedicalMethodEntityRecognition3.BESTOW:EfficientandStreamableSpeechLanguageModelwiththeBestofTwoW
- 梯度下降法以及随机梯度下降法
HKkuaidou
人工智能深度学习pythonpytorch
梯度下降法就是在更新weight的时候,向函数值下降的最快方向进行更新,具体的原理我就不再写了,就是一个求偏导的过程,有高数基础的都能够很快的理解过程。我在我的github里面会一直更新自己学习pytorch的过程,地址为:https://github.com/00paning/Pytorch_Learning这里我直接展示一个简易实现的python代码,我们还是先看一下运行的效果图:相关pyth
- 数据挖掘技术介绍
柒柒钏
数据挖掘数据挖掘人工智能
数据挖掘技术介绍分类聚类关联规则挖掘预测异常检测特征选择与降维文本挖掘序列模式挖掘深度学习集成学习数据挖掘(DataMining)是一种从大量数据中提取有用信息和模式的技术,旨在从数据中发现隐藏的规律、趋势或关系,从而为决策提供支持。分类定义:是一种监督学习方法,用于将数据分为不同的类别。功能:根据已标记的训练数据,学习一个模型,用于预测新数据的类别。方法:决策树、支持向量机、神经网络、逻辑回归、
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- 大模型开发教程:从零开始的入门指南!
程序员二飞
人工智能java数据库职场和发展深度学习
概述大模型开发教程引领人工智能领域前沿,从基础概念至实战项目,全面覆盖Python与深度学习框架使用,指导初学者构建线性回归、逻辑回归、神经网络等模型,深入探索图像分类、情感分析等复杂应用,为探索未来智能世界提供坚实基石。前排提示,文末有大模型AGI-CSDN独家资料包哦!二、基础知识2.1人工智能与深度学习的概念人工智能(AI)是计算机科学的一个分支,旨在使计算机能够执行通常需要人类智能的任务。
- XGBoost算法深度解析:从原理到实践
彩旗工作室
人工智能算法机器学习人工智能
一、算法起源与核心思想XGBoost(eXtremeGradientBoosting)由陈天奇于2014年提出,是梯度提升决策树(GBDT)的优化版本。其核心思想通过迭代集成弱学习器(CART树)逐步修正预测误差,并引入正则化机制控制模型复杂度,防止过拟合。与GBDT相比,XGBoost在目标函数中融合了损失函数(衡量预测误差)和正则化项(约束树结构与叶子权重),形成结构风险最小化框架,从而提升泛
- Python实现机器学习项目教程:房价预测
向着开发进攻
pythonpython机器学习开发语言
Python实现机器学习小项目教程:房价预测案例机器学习(MachineLearning)是数据科学中的一项重要技术,它通过从数据中学习规律,进行预测和决策。对于初学者来说,通过实际的项目来学习机器学习的原理和实现方法,是非常有效的。本篇教程将通过Python实现一个简单的机器学习小项目——房价预测。我们将使用scikit-learn库来构建并训练一个线性回归模型,预测房价。项目背景假设我们拥有一
- JVM 如何保证 Java 程序的安全性?
冰糖心书房
JVM2025Java面试系列jvmjava
JVM(JavaVirtualMachine)在设计时就考虑了安全性,它提供了一套多层次的安全机制,以保护系统免受恶意代码的侵害。这些机制主要包括:1.类加载器(ClassLoader)及双亲委派模型:类加载器的作用:负责加载Java类(.class文件)到JVM中。将类的字节码转换为内存中的Class对象。执行类的初始化。类加载器的类型:启动类加载器(BootstrapClassLoader):
- 买瓜 第十四届蓝桥杯大赛软件赛省赛C/C++ 大学 A 组
Geometry Fu
蓝桥杯蓝桥杯c语言c++
买瓜题目来源第十四届蓝桥杯大赛软件赛省赛C/C++大学A组原题链接蓝桥杯买瓜https://www.lanqiao.cn/problems/3505/learning/问题描述题目描述小蓝正在一个瓜摊上买瓜。瓜摊上共有nnn个瓜,每个瓜的重量为AiA_iAi。小蓝刀功了得,他可以把任何瓜劈成完全等重的两份,不过每个瓜只能劈一刀。小蓝希望买到的瓜的重量的和恰好为mmm。请问小蓝至少要劈多少个瓜才能买
- 异或和之和 第十四届蓝桥杯大赛软件赛省赛C/C++ 大学 A 组
Geometry Fu
蓝桥杯蓝桥杯c语言c++
异或和之和题目来源第十四届蓝桥杯大赛软件赛省赛C/C++大学A组原题链接蓝桥杯异或和之和https://www.lanqiao.cn/problems/3507/learning/问题描述问题分析要点1:异或运算概念异或(ExclusiveOR,简称XOR)是一种数学运算符,常用于逻辑运算与计算机中的位运算。当且仅当两个输入值不同时,异或运算输出为真(1),否则输出为假(0),即“同为0,异为1”
- Python爬虫学习笔记_DAY_26_Python爬虫之requests库的安装与基本使用【Python爬虫】_requests库ip
苹果Android开发组
程序员python爬虫学习
最后Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习Python门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的Pytho
- DeepSeek在供热行业中的应用
杨航 AI
人工智能深度学习python机器学习算法
目录引言1.1DeepSeek技术概述1.2供暖行业业务挑战1.3DeepSeek在供暖行业的应用前景DeepSeek技术基础2.1深度学习与机器学习2.2自然语言处理(NLP)2.3图像识别与处理2.4数据挖掘与分析供暖行业应用场景3.1设备监控与维护3.1.1设备状态监控3.1.2故障预测与诊断3.1.3维护计划优化3.2能源管理与优化3.2.1能耗数据分析3.2.2热负荷预测3.2.3节能优
- Epoch 和 Batch Size的设计 + 模型的早停策略(基于上篇)
一只小铁柱
batch开发语言
一.epoch和batchsize的设计epoch和batchsize是训练神经网络时的两个关键超参数,它们的设计会直接影响模型的训练速度、收敛性和最终性能。1.Epoch的设计epoch表示整个数据集被模型完整遍历一次。设计epoch时需要考虑以下因素:1.1数据集大小小数据集(例如几MB的文本数据):模型容易过拟合,因此epoch不宜过大(例如10-30)。可以使用早停(earlystoppi
- AI界“打工人”革命!开源神器OWL如何让普通人零门槛拥有Manus级生产力?
遇见小码
AI棱镜实验室人工智能开源github低代码AIGC
当动辄上万元的Manus邀请码成为科技圈“奢侈品”时,一群开发者仅用0天复刻出功能媲美的开源方案——OWL项目,并一举拿下GAIA基准测试开源框架第一(58.18分)OWL是什么?OWL(OptimizedWorkforceLearning)是由CAMEL-AI团队打造的多智能体协作框架。它通过AI智能体动态分工协作,像人类团队一样完成复杂任务:无需编码:输入需求即可自动拆解步骤全能助手:能操作浏
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。