本文为365天深度学习训练营内部限免文章
参考本文所写记录性文章,请在文章开头保留以下内容
- 本文为365天深度学习训练营 中的学习记录博客
- 参考文章:365天深度学习训练营-第7周:咖啡豆识别(训练营内部成员可读)
- 原作者:K同学啊|接辅导、项目定制
我的环境:
⏲往期文章:
5天学习计划-第6周:好莱坞明星识别
5天学习计划-第5周:运动鞋品牌识别
难度:夯实基础
语言:Python3、TensorFlow2
时间:9月5-9月9日
要求:
拔高(可选):
探索(难度有点大)
如果使用的是CPU可以忽略这步
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpus[0]],"GPU")
from tensorflow import keras
from tensorflow.keras import layers,models
import numpy as np
import matplotlib.pyplot as plt
import os,PIL,pathlib
# 这里需要更换成相应的地址
data_dir = "./49-data/"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.png')))
print("图片总数为:",image_count)
图片总数为: 1200
import torch
import torch.nn as nn
import os,PIL,pathlib
from PIL import Image
from torchvision import transforms, datasets
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
使用image_dataset_from_directory
方法将磁盘中的数据加载到tf.data.Dataset
中
batch_size = 32
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 1200 files belonging to 4 classes.
Using 960 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 1200 files belonging to 4 classes.
Using 240 files for validation.
我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
class_names = train_ds.class_names
print(class_names)
['Dark', 'Green', 'Light', 'Medium']
plt.figure(figsize=(10, 4)) # 图形的宽为10高为5
for images, labels in train_ds.take(1):
for i in range(10):
ax = plt.subplot(2, 5, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
(32, 224, 224, 3)
(32,)
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)
train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]
# 查看归一化后的数据
print(np.min(first_image), np.max(first_image))
0.0 1.0
在官方模型与自建模型之间进行二选一就可以了,选着一个注释掉另外一个。
VGG优缺点分析:
VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)
和最大池化尺寸(2x2)
。
1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16
权重值文件的大小为500多MB,不利于安装到嵌入式系统中。
官网模型调用这块我放到后面几篇文章中,下面主要讲一下VGG-16
# model = tf.keras.applications.VGG16(weights='imagenet')
# model.summary()
from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
def VGG16(nb_classes, input_shape):
input_tensor = Input(shape=input_shape)
# 1st block
x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
# 2nd block
x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
# 3rd block
x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
# 4th block
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
# 5th block
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
# full connection
x = Flatten()(x)
x = Dense(4096, activation='relu', name='fc1')(x)
x = Dense(4096, activation='relu', name='fc2')(x)
output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)
model = Model(input_tensor, output_tensor)
return model
model=VGG16(len(class_names), (img_width, img_height, 3))
model.summary()
2022-09-09 18:18:38.287389: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 411041792 exceeds 10% of free system memory.
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 224, 224, 3)] 0
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
flatten (Flatten) (None, 25088) 0
fc1 (Dense) (None, 4096) 102764544
fc2 (Dense) (None, 4096) 16781312
predictions (Dense) (None, 4) 16388
=================================================================
Total params: 134,276,932
Trainable params: 134,276,932
Non-trainable params: 0
_________________________________________________________________
2022-09-09 18:18:38.623610: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 411041792 exceeds 10% of free system memory.
2022-09-09 18:18:38.650108: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 411041792 exceeds 10% of free system memory.
参加了365天深度学习训练营
的同学可以在语雀中查看网络结构图
VGG-16的结构说明:
● 13个卷积层(Convolutional Layer),分别用blockX_convX表示
● 3个全连接层(Fully connected Layer),分别用fcX与predictions表示
● 5个池化层(Pool layer),分别用blockX_pool表示
VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16
initial_learning_rate = 1e-4
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=30,
decay_rate=0.92,
staircase=True
)
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)
model.compile(optimizer=opt,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.compile(optimizer=opt,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
from tensorflow.keras.callbacks import ModelCheckpoint,EarlyStopping
checkpointer = ModelCheckpoint('best_model2.h5',
monitor='val_accuracy',
verbose=1,
save_best_only=True,
save_weights_only=True)
earlystopper = EarlyStopping(monitor='val_accuracy',
min_delta=0.001,
patience=10,
verbose=1 )
epochs = 100
history = model.fit(train_ds,validation_data=val_ds,
epochs=epochs,callbacks=[checkpointer,earlystopper])
Epoch 1/100
/home/liangjie/anaconda3/lib/python3.9/site-packages/keras/backend.py:5581: UserWarning: "`sparse_categorical_crossentropy` received `from_logits=True`, but the `output` argument was produced by a Softmax activation and thus does not represent logits. Was this intended?
output, from_logits = _get_logits(
2022-09-09 18:18:52.862014: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 411041792 exceeds 10% of free system memory.
2022-09-09 18:18:52.911589: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 411041792 exceeds 10% of free system memory.
30/30 [==============================] - ETA: 0s - loss: 1.3866 - accuracy: 0.2583
Epoch 1: val_accuracy improved from -inf to 0.22083, saving model to best_model2.h5
30/30 [==============================] - 283s 9s/step - loss: 1.3866 - accuracy: 0.2583 - val_loss: 1.3780 - val_accuracy: 0.2208
Epoch 2/100
30/30 [==============================] - ETA: 0s - loss: 1.1149 - accuracy: 0.4042
Epoch 2: val_accuracy improved from 0.22083 to 0.56250, saving model to best_model2.h5
30/30 [==============================] - 280s 9s/step - loss: 1.1149 - accuracy: 0.4042 - val_loss: 0.8386 - val_accuracy: 0.5625
Epoch 3/100
30/30 [==============================] - ETA: 0s - loss: 0.7181 - accuracy: 0.6333
Epoch 3: val_accuracy improved from 0.56250 to 0.77500, saving model to best_model2.h5
30/30 [==============================] - 284s 9s/step - loss: 0.7181 - accuracy: 0.6333 - val_loss: 0.5654 - val_accuracy: 0.7750
Epoch 4/100
30/30 [==============================] - ETA: 0s - loss: 0.5410 - accuracy: 0.7490
Epoch 4: val_accuracy did not improve from 0.77500
30/30 [==============================] - 290s 10s/step - loss: 0.5410 - accuracy: 0.7490 - val_loss: 0.5881 - val_accuracy: 0.7042
Epoch 5/100
30/30 [==============================] - ETA: 0s - loss: 0.4812 - accuracy: 0.7500
Epoch 5: val_accuracy improved from 0.77500 to 0.84583, saving model to best_model2.h5
30/30 [==============================] - 288s 10s/step - loss: 0.4812 - accuracy: 0.7500 - val_loss: 0.4021 - val_accuracy: 0.8458
Epoch 6/100
30/30 [==============================] - ETA: 0s - loss: 0.3147 - accuracy: 0.8760
Epoch 6: val_accuracy improved from 0.84583 to 0.91667, saving model to best_model2.h5
30/30 [==============================] - 281s 9s/step - loss: 0.3147 - accuracy: 0.8760 - val_loss: 0.2322 - val_accuracy: 0.9167
Epoch 7/100
30/30 [==============================] - ETA: 0s - loss: 0.1761 - accuracy: 0.9417
Epoch 7: val_accuracy improved from 0.91667 to 0.95833, saving model to best_model2.h5
30/30 [==============================] - 284s 9s/step - loss: 0.1761 - accuracy: 0.9417 - val_loss: 0.0905 - val_accuracy: 0.9583
Epoch 8/100
30/30 [==============================] - ETA: 0s - loss: 0.1180 - accuracy: 0.9604
Epoch 8: val_accuracy improved from 0.95833 to 0.97083, saving model to best_model2.h5
30/30 [==============================] - 283s 9s/step - loss: 0.1180 - accuracy: 0.9604 - val_loss: 0.0926 - val_accuracy: 0.9708
Epoch 9/100
30/30 [==============================] - ETA: 0s - loss: 0.1047 - accuracy: 0.9615
Epoch 9: val_accuracy improved from 0.97083 to 0.97917, saving model to best_model2.h5
30/30 [==============================] - 280s 9s/step - loss: 0.1047 - accuracy: 0.9615 - val_loss: 0.0477 - val_accuracy: 0.9792
Epoch 10/100
30/30 [==============================] - ETA: 0s - loss: 0.0889 - accuracy: 0.9792
Epoch 10: val_accuracy did not improve from 0.97917
30/30 [==============================] - 276s 9s/step - loss: 0.0889 - accuracy: 0.9792 - val_loss: 0.0630 - val_accuracy: 0.9792
Epoch 11/100
30/30 [==============================] - ETA: 0s - loss: 0.0399 - accuracy: 0.9885
Epoch 11: val_accuracy did not improve from 0.97917
30/30 [==============================] - 273s 9s/step - loss: 0.0399 - accuracy: 0.9885 - val_loss: 0.0775 - val_accuracy: 0.9792
Epoch 12/100
30/30 [==============================] - ETA: 0s - loss: 0.0562 - accuracy: 0.9781
Epoch 12: val_accuracy did not improve from 0.97917
30/30 [==============================] - 275s 9s/step - loss: 0.0562 - accuracy: 0.9781 - val_loss: 0.1950 - val_accuracy: 0.9333
Epoch 13/100
30/30 [==============================] - ETA: 0s - loss: 0.1094 - accuracy: 0.9604
Epoch 13: val_accuracy did not improve from 0.97917
30/30 [==============================] - 282s 9s/step - loss: 0.1094 - accuracy: 0.9604 - val_loss: 0.6036 - val_accuracy: 0.8000
Epoch 14/100
30/30 [==============================] - ETA: 0s - loss: 0.1230 - accuracy: 0.9688
Epoch 14: val_accuracy did not improve from 0.97917
30/30 [==============================] - 285s 9s/step - loss: 0.1230 - accuracy: 0.9688 - val_loss: 0.3477 - val_accuracy: 0.9000
Epoch 15/100
30/30 [==============================] - ETA: 0s - loss: 0.0766 - accuracy: 0.9719
Epoch 15: val_accuracy did not improve from 0.97917
30/30 [==============================] - 284s 9s/step - loss: 0.0766 - accuracy: 0.9719 - val_loss: 0.1054 - val_accuracy: 0.9667
Epoch 16/100
30/30 [==============================] - ETA: 0s - loss: 0.0280 - accuracy: 0.9875
Epoch 16: val_accuracy did not improve from 0.97917
30/30 [==============================] - 286s 10s/step - loss: 0.0280 - accuracy: 0.9875 - val_loss: 0.0859 - val_accuracy: 0.9750
Epoch 17/100
30/30 [==============================] - ETA: 0s - loss: 0.0543 - accuracy: 0.9833
Epoch 17: val_accuracy did not improve from 0.97917
30/30 [==============================] - 285s 9s/step - loss: 0.0543 - accuracy: 0.9833 - val_loss: 0.1131 - val_accuracy: 0.9667
Epoch 18/100
30/30 [==============================] - ETA: 0s - loss: 0.0530 - accuracy: 0.9833
Epoch 18: val_accuracy did not improve from 0.97917
30/30 [==============================] - 289s 10s/step - loss: 0.0530 - accuracy: 0.9833 - val_loss: 0.0772 - val_accuracy: 0.9792
Epoch 19/100
30/30 [==============================] - ETA: 0s - loss: 0.0113 - accuracy: 0.9969
Epoch 19: val_accuracy improved from 0.97917 to 0.98750, saving model to best_model2.h5
30/30 [==============================] - 284s 9s/step - loss: 0.0113 - accuracy: 0.9969 - val_loss: 0.0545 - val_accuracy: 0.9875
Epoch 20/100
30/30 [==============================] - ETA: 0s - loss: 0.0115 - accuracy: 0.9958
Epoch 20: val_accuracy did not improve from 0.98750
30/30 [==============================] - 282s 9s/step - loss: 0.0115 - accuracy: 0.9958 - val_loss: 0.0745 - val_accuracy: 0.9833
Epoch 21/100
30/30 [==============================] - ETA: 0s - loss: 0.0140 - accuracy: 0.9948
Epoch 21: val_accuracy did not improve from 0.98750
30/30 [==============================] - 281s 9s/step - loss: 0.0140 - accuracy: 0.9948 - val_loss: 0.2310 - val_accuracy: 0.9583
Epoch 22/100
30/30 [==============================] - ETA: 0s - loss: 0.1326 - accuracy: 0.9510
Epoch 22: val_accuracy did not improve from 0.98750
30/30 [==============================] - 286s 10s/step - loss: 0.1326 - accuracy: 0.9510 - val_loss: 0.1169 - val_accuracy: 0.9542
Epoch 23/100
30/30 [==============================] - ETA: 0s - loss: 0.0357 - accuracy: 0.9896
Epoch 23: val_accuracy did not improve from 0.98750
30/30 [==============================] - 282s 9s/step - loss: 0.0357 - accuracy: 0.9896 - val_loss: 0.0613 - val_accuracy: 0.9750
Epoch 24/100
30/30 [==============================] - ETA: 0s - loss: 0.0148 - accuracy: 0.9948
Epoch 24: val_accuracy did not improve from 0.98750
30/30 [==============================] - 273s 9s/step - loss: 0.0148 - accuracy: 0.9948 - val_loss: 0.0496 - val_accuracy: 0.9875
Epoch 25/100
30/30 [==============================] - ETA: 0s - loss: 0.2279 - accuracy: 0.9240
Epoch 25: val_accuracy did not improve from 0.98750
30/30 [==============================] - 282s 9s/step - loss: 0.2279 - accuracy: 0.9240 - val_loss: 0.3698 - val_accuracy: 0.8625
Epoch 26/100
30/30 [==============================] - ETA: 0s - loss: 0.1049 - accuracy: 0.9688
Epoch 26: val_accuracy did not improve from 0.98750
30/30 [==============================] - 288s 10s/step - loss: 0.1049 - accuracy: 0.9688 - val_loss: 0.0966 - val_accuracy: 0.9792
Epoch 27/100
30/30 [==============================] - ETA: 0s - loss: 0.0308 - accuracy: 0.9875
Epoch 27: val_accuracy did not improve from 0.98750
30/30 [==============================] - 290s 10s/step - loss: 0.0308 - accuracy: 0.9875 - val_loss: 0.2521 - val_accuracy: 0.9375
Epoch 28/100
30/30 [==============================] - ETA: 0s - loss: 0.0200 - accuracy: 0.9927
Epoch 28: val_accuracy did not improve from 0.98750
30/30 [==============================] - 286s 10s/step - loss: 0.0200 - accuracy: 0.9927 - val_loss: 0.1435 - val_accuracy: 0.9625
Epoch 29/100
30/30 [==============================] - ETA: 0s - loss: 0.0144 - accuracy: 0.9948
Epoch 29: val_accuracy did not improve from 0.98750
30/30 [==============================] - 283s 9s/step - loss: 0.0144 - accuracy: 0.9948 - val_loss: 0.0737 - val_accuracy: 0.9708
Epoch 29: early stopping
from pyecharts.charts import *
import pyecharts.options as opts
from pyecharts.globals import ThemeType
loss = history.history['loss']
val_loss = history.history['val_loss']
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
line_loss = Line()
line_loss.add_xaxis([i for i in range(30)])
line_loss.add_yaxis('loss', loss, label_opts=opts.LabelOpts(is_show=False))
line_loss.add_yaxis('val_loss', val_loss, label_opts=opts.LabelOpts(is_show=False))
line_loss.set_global_opts(legend_opts=opts.LegendOpts(pos_top='5%',pos_left='20%'),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="line"))
line_acc = Line()
line_acc.add_xaxis([i for i in range(30)])
line_acc.add_yaxis('accuracy', acc, label_opts=opts.LabelOpts(is_show=False))
line_acc.add_yaxis('val_accuracy', val_acc, label_opts=opts.LabelOpts(is_show=False))
line_acc.set_global_opts(title_opts=opts.TitleOpts('模型训练过程效果记录', pos_left='center'),
legend_opts=opts.LegendOpts(pos_top='5%', pos_left='65%'),
yaxis_opts=opts.AxisOpts(is_scale=True),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="line"))
grid = Grid(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
grid.add(line_loss,grid_opts=opts.GridOpts(pos_left='5%', pos_right='55%'))
grid.add(line_acc,grid_opts=opts.GridOpts(pos_left='55%', pos_right='5%'))
grid.render_notebook()
设置了早停,epochs从20增加到100
修改结果前:val_accuracy: 0.96
修改结果后:val_accuracy: 0.970