前言
有些小伙伴经过金九银十这两个月的面试奋战,终于成功拿下了一些大厂的offer。小编总结了这些小伙伴的Java面试经验,整理了一份微服务面试题分享给大家,希望能给大家一点帮助。
微服务架构是一种架构模式或者说是一种架构风格,它提倡将单一应用程序划分成一组小的服务,每个服务运行在其独立的自己的进程中,服务之间互相协调、互相配合,为用户提供最终价值。 服务之间采用轻量级的通信机制互相沟通(通常是基于HTTP的RESTful API)。每个服务都围绕着具体业务进行构建,并且能够被独立地部署到生产环境、类生产环境等。另外,应尽量避免统一的、集中式的服务管理机制,对具体的一个服务而言,应根据业务上下文,选择合适的语言、工具对其进行构建,可以有一个非常轻量级的集中式管理来协调这些服务,可以使用不同的语言来编写服务,也可以使用不同的数据存储。
从技术维度来说:
微服务化的核心就是将传统的一站式应用,根据业务拆分成一个一个的服务,彻底地去耦合,每一个微服务提供单个业务功能的服务,一个服务做一件事,从技术角度看就是一种小而独立的处理过程,类似进程概念,能够自行单独启动或销毁,拥有自己独立的数据库。
① 远程过程调用(Remote Procedure Invocation)
直接通过远程过程调用来访问别的service。
示例:REST、gRPC、Apache、Thrift
优点:
简单,常见。因为没有中间件代理,系统更简单
缺点:
只支持请求/响应的模式,不支持别的,比如通知、请求/异步响应、发布/订阅、发布/异步响应降低了可用性,因为客户端和服务端在请求过程中必须都是可用的
② 消息
使用异步消息来做服务间通信。服务间通过消息管道来交换消息,从而通信。
示例:Apache Kafka、RabbitMQ
优点:
把客户端和服务端解耦,更松耦合 提高可用性,因为消息中间件缓存了消息,直到消费者可以消费支持很多通信机制比如通知、请求/异步响应、发布/订阅、发布/异步响应
缺点:
消息中间件有额外的复杂性
相同点:
SpringCloud 和Dubbo可以实现RPC远程调用框架,可以实现服务治理。
不同点:
SpringCloud是一套目前比较网站微服务框架了,整合了分布式常用解决方案遇到了问题注册中心Eureka、负载均衡器Ribbon ,客户端调用工具Rest和Feign,分布式配置中心Config,服务保护Hystrix,网关Zuul Gateway ,服务链路Zipkin,消息总线Bus等。
Dubbo内部实现功能没有SpringCloud强大(全家桶),只是实现服务治理,缺少分布式配置中心、网关、链路、总线等,如果需要用到这些组件,需要整合其他框架。
① SpringBoot专注于快速方便的开发单个个体微服务。
② SpringCloud是关注全局的微服务协调整理治理框架,它将SpringBoot开发的一个个单体微服务整合并管理起来,为各个微服务之间提供,配置管理、服务发现、断路器、路由、微代理、事件总线、全局锁、决策竞选、分布式会话等等集成服务
③ SpringBoot可以离开SpringCloud独立使用开发项目,但是SpringCloud离不开SpringBoot,属于依赖的关系.
④ SpringBoot专注于快速、方便的开发单个微服务个体,SpringCloud关注全局的服务治理框架。
Spring Boot可以离开Spring Cloud独立使用开发项目,但是Spring Cloud离不开Spring Boot,属于依赖的关系。
复杂分布式体系结构中的应用程序有数十个依赖关系,每个依赖关系在某些时候将不可避免地失败。
服务雪崩
多个微服务之间调用的时候,假设微服务A调用微服务B和微服务C,微服务B和微服务C又调用其它的微服务,这就是所谓的“扇出”。如果扇出的链路上某个微服务的调用响应时间过长或者不可用,对微服务A的调用就会占用越来越多的系统资源,进而引起系统崩溃,所谓的“雪崩效应”。
对于高流量的应用来说,单一的后端依赖可能会导致所有服务器上的所有资源都在几秒钟内饱和。比失败更糟糕的是,这些应用程序还可能导致服务之间的延迟增加,备份队列,线程和其他系统资源紧张,导致整个系统发生更多的级联故障。这些都表示需要对故障和延迟进行隔离和管理,以便单个依赖关系的失败,不能取消整个应用程序或系统。
一般情况对于服务依赖的保护主要有以下三种解决方案:
**① 熔断模式:**这种模式主要是参考电路熔断,如果一条线路电压过高,保险丝会熔断,防止火灾。放到我们的系统中,如果某个目标服务调用慢或者有大量超时,此时,熔断该服务的调用,对于后续调用请求,不再继续调用目标服务,直接返回,快速释放资源。如果目标服务情况好转则恢复调用。
**② 隔离模式:**这种模式就像对系统请求按类型划分成一个个小岛的一样,当某个小岛被火烧光了,不会影响到其他的小岛。例如可以对不同类型的请求使用线程池来资源隔离,每种类型的请求互不影响,如果一种类型的请求线程资源耗尽,则对后续的该类型请求直接返回,不再调用后续资源。这种模式使用场景非常多,例如将一个服务拆开,对于重要的服务使用单独服务器来部署,再或者公司最近推广的多中心。
**③ 限流模式:**上述的熔断模式和隔离模式都属于出错后的容错处理机制,而限流模式则可以称为预防模式。限流模式主要是提前对各个类型的请求设置最高的QPS阈值,若高于设置的阈值则对该请求直接返回,不再调用后续资源。这种模式不能解决服务依赖的问题,只能解决系统整体资源分配问题,因为没有被限流的请求依然有可能造成雪崩效应。
服务熔断
熔断机制是应对雪崩效应的一种微服务链路保护机制。
当删出链路的某个微服务不可用或者响应时间太长时,会进行服务的降级,进而熔断该节点微服务的调用,快速返回"错误"的响应信息。当检测到该节点微服务调用响应正常后恢复调用链路。在SpringCloud框架里熔断机制通过Hystrix实现。Hystrix会监控微服务间调用的状况,当失败的调用到一定阈值,缺省是5秒内20次调用失败就会启动熔断机制。熔断机制的注解是@HystrixCommand。
Hystrix服务降级
其实就是线程池中单个线程障处理,防止单个线程请求时间太长,导致资源长期被占有而得不到释放,从而导致线程池被快速占用完,导致服务崩溃。
Hystrix能解决如下问题:
① 请求超时降级,线程资源不足降级,降级之后可以返回自定义数据
② 线程池隔离降级,分布式服务可以针对不同的服务使用不同的线程池,从而互不影响
③ 自动触发降级与恢复
④ 实现请求缓存和请求合并
优点
缺点
Springboot、Spring、SpringMVC
Netflix公司的Archaius、阿里的Diamond等
Eureka、Consul、Zookeeper等
Rest、RPC、gRPC
Hystrix、Envoy等
Ribbon、Nginx等
Feign等
Kafka、RabbitMQ、ActiveMQ等
SpringCloudConfig、Chef等
Zuul等
Zabbix、Nagios、Metrics、Spectator等
Zipkin,Brave、Dapper等
Docker、OpenStack、Kubernetes等
SpringCloud Stream(封装与Redis,Rabbit、Kafka等发送接收消息)
Spring Cloud Bus
Eureka是Netflix的一个子模块,也是核心模块之一。Eureka是一个基于REST的服务,用于定位服务,以实现云端中间层服务发现和故障转移。服务注册与发现对于微服务架构来说是非常重要的,有了服务发现与注册,只需要使用服务的标识符,就可以访问到服务,而不需要修改服务调用的配置文件了。功能类似于dubbo的注册中心,比如Zookeeper。
Spring Cloud 封装了 Netflix 公司开发的 Eureka 模块来实现服务注册和发现(请对比Zookeeper)。Eureka 采用了 C-S 的设计架构。Eureka Server 作为服务注册功能的服务器,它是服务注册中心。
而系统中的其他微服务,使用 Eureka 的客户端连接到 Eureka Server并维持心跳连接。这样系统的维护人员就可以通过 Eureka Server 来监控系统中各个微服务是否正常运行。SpringCloud 的一些其他模块(比如Zuul)就可以通过 Eureka Server 来发现系统中的其他微服务,并执行相关的逻辑。
Eureka包含两个组件: Eureka Server 和 Eureka Client
Eureka Server提供服务注册服务
各个节点启动后,会在EurekaServer中进行注册,这样EurekaServer中的服务注册表中将会存储所有可用服务节点的信息,服务节点的信息可以在界面中直观的看到EurekaClient是一个Java客户端
用于简化Eureka Server的交互,客户端同时也具备一个内置的、使用轮询(round-robin)负载算法的负载均衡器。在应用启动后,将会向Eureka Server发送心跳(默认周期为30秒)。如果Eureka Server在多个心跳周期内没有接收到某个节点的心跳,EurekaServer将会从服务注册表中把这个服务节点移除(默认90秒)
著名的CAP理论指出,一个分布式系统不可能同时满足C(一致性)、A(可用性)和P(分区容错性)。由于分区容错性P在是分布式系统中必须要保证的,因此我们只能在A和C之间进行权衡。
因此,Zookeeper 保证的是CP, Eureka 则是AP。
Zookeeper保证CP
当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟以前的注册信息,但不能接受服务直接down掉不可用。也就是说,服务注册功能对可用性的要求要高于一致性。但是zk会出现这样一种情况,当master节点因为网络故障与其他节点失去联系时,剩余节点会重新进行leader选举。问题在于,选举leader的时间太长,30~120s,且选举期间整个zk集群都是不可用的,这就导致在选举期间注册服务瘫痪。在云部署的环境下,因网络问题使得zk集群失去master节点是较大概率会发生的事,虽然服务能够最终恢复,但是漫长的选举时间导致的注册长期不可用是不能容忍的。
Eureka保证AP
Eureka看明白了这一点,因此在设计时就优先保证可用性。Eureka各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余的节点依然可以提供注册和查询服务。而Eureka的客户端在向某个Eureka注册或时如果发现连接失败,则会自动切换至其它节点,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。
除此之外,Eureka还有一种自我保护机制,如果在15分钟内超过85%的节点都没有正常的心跳,那么Eureka就认为客户端与注册中心出现了网络故障,此时会出现以下几种情况:
Eureka不再从注册列表中移除因为长时间没收到心跳而应该过期的服务
Eureka仍然能够接受新服务的注册和查询请求,但是不会被同步到其它节点上(即保证当前节点依然可用)当网络稳定时,当前实例新的注册信息会被同步到其它节点中,因此, Eureka可以很好的应对因网络故障导致部分节点失去联系的情况,而不会像zookeeper那样使整个注册服务瘫痪。
Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端 负载均衡的工具。
简单的说,Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法,将Netflix的中间层服务连接在一起。Ribbon客户端组件提供一系列完善的配置项如连接超时,重试等。简单说,就是在配置文件中列出Load Balancer(简称LB)后面所有的机器,Ribbon会自动的帮助你基于某种规则(如简单轮询,随机连接等)去连接这些机器。我们也很容易使用Ribbon实现自定义的负载均衡算法。
LB(负载均衡)
LB,即负载均衡(Load Balance),在微服务或分布式集群中经常用的一种应用。负载均衡简单的说就是将用户的请求平摊的分配到多个服务上,从而达到系统的HA。
常见的负载均衡有软件Nginx,LVS,硬件 F5等。
相应的在中间件,例如:dubbo和SpringCloud中均给我们提供了负载均衡,SpringCloud的负载均衡算法可以自定义。
集中式LB
即在服务的消费方和提供方之间使用独立的LB设施(可以是硬件,如F5, 也可以是软件,如nginx), 由该设施负责把访问请求通过某种策略转发至服务的提供方;
进程内LB
将LB逻辑集成到消费方,消费方从服务注册中心获知有哪些地址可用,然后自己再从这些地址中选择出一个合适的服务器。
注意: Ribbon就属于进程内LB,它只是一个类库,集成于消费方进程,消费方通过它来获取到服务提供方的地址。
Feign是一个声明式WebService客户端。使用Feign能让编写Web Service客户端更加简单, 它的使用方法是定义一个接口,然后在上面添加注解,同时也支持JAX-RS标准的注解。Feign也支持可拔插式的编码器和解码器。Spring Cloud对Feign进行了封装,使其支持了Spring MVC标准注解和HttpMessageConverters。 Feign可以与Eureka和Ribbon组合使用以支持负载均衡。
Feign是一个声明式的Web服务客户端,使得编写Web服务客户端变得非常容易,只需要创建一个接口,然后在上面添加注解即可。
Feign旨在使编写Java Http客户端变得更容易。
前面在使用Ribbon+RestTemplate时,利用RestTemplate对http请求的封装处理,形成了一套模版化的调用方法。但是在实际开发中,由于对服务依赖的调用可能不止一处,往往一个接口会被多处调用,所以通常都会针对每个微服务自行封装一些客户端类来包装这些依赖服务的调用。所以,Feign在此基础上做了进一步封装,由他来帮助我们定义和实现依赖服务接口的定义。在Feign的实现下,我们只需创建一个接口并使用注解的方式来配置它(以前是Dao接口上面标注Mapper注解,现在是一个微服务接口上面标注一个Feign注解即可),即可完成对服务提供方的接口绑定,简化了使用Spring cloud Ribbon时,自动封装服务调用客户端的开发量。
Feign集成了Ribbon
利用Ribbon维护了MicroServiceCloud-Dept的服务列表信息,并且通过轮询实现了客户端的负载均衡。而与Ribbon不同的是,通过feign只需要定义服务绑定接口且以声明式的方法,优雅而简单的实现了服务调用。Feign通过接口的方法调用Rest服务(之前是Ribbon+RestTemplate),该请求发送给Eureka服务器(http://MICROSERVICECLOUD-DEPT/dept/list),通过Feign直接找到服务接口,由于在进行服务调用的时候融合了Ribbon技术,所以也支持负载均衡作用。
Hystrix是一个用于处理分布式系统的延迟和容错的开源库,在分布式系统里,许多依赖不可避免的会调用失败,比如超时、异常等, Hystrix能够保证在一个依赖出问题的情况下,不会导致整体服务失败,避免级联故障,以提高分布式系统的弹性。
“断路器”本身是一种开关装置,当某个服务单元发生故障之后,通过断路器的故障监控(类似熔断保险丝),向调用方返回一个符合预期的、可处理的备选响应(FallBack),而不是长时间的等待或者抛出调用方无法处理的异常,这样就保证了服务调用方的线程不会被长时间、不必要地占用,从而避免了故障在分布式系统中的蔓延,乃至雪崩。
① 服务降级
整体资源快不够了,忍痛将某些服务先关掉,待渡过难关,再开启回来
② 服务熔断
熔断机制是应对雪崩效应的一种微服务链路保护机制。
当扇出链路的某个微服务不可用或者响应时间太长时,会进行服务的降级,进而熔断该节点微服务的调用,快速返回"错误"的响应信息。当检测到该节点微服务调用响应正常后恢复调用链路。在SpringCloud框架里熔断机制通过Hystrix实现。Hystrix会监控微服务间调用的状况,当失败的调用到一定阈值,缺省是5秒内20次调用失败就会启动熔断机制。熔断机制的注解是@HystrixCommand。
③ 服务限流
④ 接近实时的监控
除了隔离依赖服务的调用以外,Hystrix还提供了准实时的调用监控(HystrixDashboard),Hystrix会持续地记录所有通过Hystrix发起的请求的执行信息,并以统计报表和图形的形式展示给用户,包括每秒执行多少请求多少成功,多少失败等。Netflix通过hystrix-metrics-event-stream项目实现了对以上指标的监控。SpringCloud也提供了Hystrix Dashboard的整合,对监控内容转化成可视化界面。
Zuul 包含了对请求的路由和过滤两个最主要的功能:
其中路由功能负责将外部请求转发到具体的微服务实例上,是实现外部访问统一入口的基础而过滤器功能则负责对请求的处理过程进行干预,是实现请求校验、服务聚合等功能的基础.Zuul和Eureka进行整合,将Zuul自身注册为Eureka服务治理下的应用,同时从Eureka中获得其他微服务的消息,也即以后的访问微服务都是通过Zuul跳转后获得。
注意: Zuul服务最终还是会注册进Eureka
提供=代理+路由+过滤 三大功能
SpringCloud Config为微服务架构中的微服务提供集中化的外部配置支持,配置服务器为各个不同微服务应用的所有环境提供了一个中心化的外部配置。
① 集中管理配置文件,不同环境不同配置,动态化的配置更新,分环境部署比如dev/test/prod/beta/release
② 运行期间动态调整配置,不再需要在每个服务部署的机器上编写配置文件,服务会向配置中心统一拉取配置自己的信息
③ 当配置发生变动时,服务不需要重启==即可感知到配置的变化并应用新的配置将配置信息以REST接口的形式暴露
这些面试题是小编结合自己的经验和其他小伙伴这段时间的大厂面试经验筛选出来的,希望能帮助到大家。
小编还整理了大厂java程序员面试涉及到的绝大部分面试题及答案免费分享给大家,希望能帮助到大家,有需要的朋友可以看下面的免费领取方式!
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
领资料点这里暗号CSDN
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
领资料点这里暗号CSDN
最后感谢大家的支持,希望小编整理的资料能够帮助到大家!也祝愿大家都能够升职加薪!