2014年诞生了两个大名鼎鼎的网络,一个是VGG另一个就是GoogLeNet,直到包括VGG网络之前,模型的一直都是再纵向上改变,而GoogLeNet在增加模型深度的同时做了宽度上的开拓,并将拥有不同尺寸卷积核的卷积层的输出结果,横向拼接到一起,同时关注不同尺寸的特征。
LeNet-AlexNet-ZFNet: LeNet-AlexNet-ZFNet一维复现pytorch
VGG: VGG一维复现pytorch
GoogLeNet: GoogLeNet一维复现pytorch
ResNet: ResNet残差网络一维复现pytorch-含残差块复现思路分析
DenseNet: DenseNet一维复现pytorch
GoogLeNet原文链接: Going deeper with convolutions
网络结构图如下,如图一共有9个Inception结构还有3个分类器,由于有三个分类器,最终会把每第一第二分类器的损失乘以0.3加到最终第三个分类器输出的损失上,复现GoogLeNet比麻烦的是这里需要写一个新的损失函数,而其他的复现当中,都是直接用最后一层的损失训练,没有完全复现。
其中Inception结构论文里也给了两种方式
a是原始版本,b是减少参数量的版本,a几乎可以说是只有理论上存在,实际使用的都是b版本。接下来开始讨论b版本的inception结构。
Inception有5个部分需要7个参数
1.输入通道数
2.最左侧的卷积核大小为1的卷积的输出通道数
3.从左数第二个分支的两个卷积层中间的过渡通道数和输出通道数
4.从右数第二个分支的两个卷积层中间的过渡通道数和输出通道数
5.最右侧池化层及其链接的一维卷积层的输出通道数
class Inception(torch.nn.Module):
def __init__(self,in_channels=56,ch1=64,ch3_reduce=96,ch3=128,ch5_reduce=16,ch5=32,pool_proj=32):
super(Inception, self).__init__()
self.branch1 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels,ch1,kernel_size=1),
torch.nn.BatchNorm1d(ch1)
)
self.branch3 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels, ch3_reduce, kernel_size=1),
torch.nn.BatchNorm1d(ch3_reduce),
torch.nn.Conv1d(ch3_reduce, ch3, kernel_size=3, padding=1),
torch.nn.BatchNorm1d(ch3),
)
self.branch5 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels, ch5_reduce, kernel_size=1),
torch.nn.BatchNorm1d(ch5_reduce),
torch.nn.Conv1d(ch5_reduce, ch5, kernel_size=5, padding=2),
torch.nn.BatchNorm1d(ch5),
)
self.branch_pool = torch.nn.Sequential(
torch.nn.MaxPool1d(kernel_size=3,stride=1,padding=1),
torch.nn.Conv1d(in_channels, pool_proj, kernel_size=1)
)
def forward(self,x):
return torch.cat([self.branch1(x),self.branch3(x),self.branch5(x),self.branch_pool(x)],1)
最后将每一个分支输出的在第二个维度拼接到一起,也就是维度1。批次是维度0,样本点是维度2。
下面是论文中给出的网络的参数列表
其中reduce参数就是过渡通道数,根据论文中所给的参数表,加上三个分类器复现代码如下
import torch
class Inception(torch.nn.Module):
def __init__(self,in_channels=56,ch1=64,ch3_reduce=96,ch3=128,ch5_reduce=16,ch5=32,pool_proj=32):
super(Inception, self).__init__()
self.branch1 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels,ch1,kernel_size=1),
torch.nn.BatchNorm1d(ch1)
)
self.branch3 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels, ch3_reduce, kernel_size=1),
torch.nn.BatchNorm1d(ch3_reduce),
torch.nn.Conv1d(ch3_reduce, ch3, kernel_size=3, padding=1),
torch.nn.BatchNorm1d(ch3),
)
self.branch5 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels, ch5_reduce, kernel_size=1),
torch.nn.BatchNorm1d(ch5_reduce),
torch.nn.Conv1d(ch5_reduce, ch5, kernel_size=5, padding=2),
torch.nn.BatchNorm1d(ch5),
)
self.branch_pool = torch.nn.Sequential(
torch.nn.MaxPool1d(kernel_size=3,stride=1,padding=1),
torch.nn.Conv1d(in_channels, pool_proj, kernel_size=1)
)
def forward(self,x):
return torch.cat([self.branch1(x),self.branch3(x),self.branch5(x),self.branch_pool(x)],1)
class GoogLeNet(torch.nn.Module):
def __init__(self,in_channels=2,in_sample_points=224,classes=5):
super(GoogLeNet, self).__init__()
self.features=torch.nn.Sequential(
torch.nn.Linear(in_sample_points,224),
torch.nn.Conv1d(in_channels,64,kernel_size=7,stride=2,padding=3),
torch.nn.MaxPool1d(3,2,padding=1),
torch.nn.Conv1d(64,192,3,padding=1),
torch.nn.MaxPool1d(3,2,padding=1),
Inception(192,64,96,128,16,32,32),
Inception(256,128,128,192,32,96,64),
torch.nn.MaxPool1d(3,2,padding=1),
Inception(480,192,96,208,16,48,64),
)
self.classifer_max_pool = torch.nn.MaxPool1d(5,3)
self.classifer = torch.nn.Sequential(
torch.nn.Linear(2048,1024),
torch.nn.Dropout(0.5),
torch.nn.ReLU(),
torch.nn.Linear(1024,512),
torch.nn.Dropout(0.5),
torch.nn.ReLU(),
torch.nn.Linear(512,classes),
)
self.Inception_4b = Inception(512,160,112,224,24,64,64)
self.Inception_4c = Inception(512,128,128,256,24,64,64)
self.Inception_4d = Inception(512,112,144,288,32,64,64)
self.classifer1 = torch.nn.Sequential(
torch.nn.Linear(2112,1056),
torch.nn.Dropout(0.5),
torch.nn.ReLU(),
torch.nn.Linear(1056,528),
torch.nn.Dropout(0.5),
torch.nn.ReLU(),
torch.nn.Linear(528,classes),
)
self.Inception_4e = Inception(528,256,160,320,32,128,128)
self.max_pool = torch.nn.MaxPool1d(3,2,1)
self.Inception_5a = Inception(832,256,160,320,32,128,128)
self.Inception_5b = Inception(832,384,192,384,48,128,128)
self.avg_pool = torch.nn.AvgPool1d(7,stride=1)
self.dropout = torch.nn.Dropout(0.4)
self.classifer2 = torch.nn.Sequential(
torch.nn.Linear(1024, 512),
torch.nn.Dropout(0.5),
torch.nn.ReLU(),
torch.nn.Linear(512, classes),
)
def forward(self,x):
x = self.features(x)
y = self.classifer(self.classifer_max_pool(x).view(-1,2048))
x = self.Inception_4b(x)
x = self.Inception_4c(x)
x = self.Inception_4d(x)
y1 = self.classifer1(self.classifer_max_pool(x).view(-1,2112))
x = self.Inception_4e(x)
x = self.max_pool(x)
x = self.Inception_5a(x)
x = self.Inception_5b(x)
x = self.avg_pool(x)
x = self.dropout(x)
x = x.view(-1,1024)
x = self.classifer2(x)
return x,y,y1
其中x为softmax2分类器输出y1为softmax1分类器输出y为softmax0分类器输出
这里比较特殊的就是需要返回三个输出因此需要配套的损失函数。
class GoogLeNetLoss(torch.nn.Module):
def __init__(self):
super(GoogLeNetLoss, self).__init__()
self.CrossEntropyLoss = torch.nn.CrossEntropyLoss()
def forward(self,data,label):
c2_loss = self.CrossEntropyLoss(data[0],label)
c0_loss = self.CrossEntropyLoss(data[1],label)
c1_loss = self.CrossEntropyLoss(data[2],label)
loss = c2_loss + 0.3*(c0_loss+c1_loss)
return loss
import torch
from torchsummary import summary
class Inception(torch.nn.Module):
def __init__(self,in_channels=56,ch1=64,ch3_reduce=96,ch3=128,ch5_reduce=16,ch5=32,pool_proj=32):
super(Inception, self).__init__()
self.branch1 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels,ch1,kernel_size=1),
torch.nn.BatchNorm1d(ch1)
)
self.branch3 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels, ch3_reduce, kernel_size=1),
torch.nn.BatchNorm1d(ch3_reduce),
torch.nn.Conv1d(ch3_reduce, ch3, kernel_size=3, padding=1),
torch.nn.BatchNorm1d(ch3),
)
self.branch5 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels, ch5_reduce, kernel_size=1),
torch.nn.BatchNorm1d(ch5_reduce),
torch.nn.Conv1d(ch5_reduce, ch5, kernel_size=5, padding=2),
torch.nn.BatchNorm1d(ch5),
)
self.branch_pool = torch.nn.Sequential(
torch.nn.MaxPool1d(kernel_size=3,stride=1,padding=1),
torch.nn.Conv1d(in_channels, pool_proj, kernel_size=1)
)
def forward(self,x):
return torch.cat([self.branch1(x),self.branch3(x),self.branch5(x),self.branch_pool(x)],1)
class GoogLeNet(torch.nn.Module):
def __init__(self,in_channels=2,in_sample_points=224,classes=5):
super(GoogLeNet, self).__init__()
self.features=torch.nn.Sequential(
torch.nn.Linear(in_sample_points,224),
torch.nn.Conv1d(in_channels,64,kernel_size=7,stride=2,padding=3),
torch.nn.MaxPool1d(3,2,padding=1),
torch.nn.Conv1d(64,192,3,padding=1),
torch.nn.MaxPool1d(3,2,padding=1),
Inception(192,64,96,128,16,32,32),
Inception(256,128,128,192,32,96,64),
torch.nn.MaxPool1d(3,2,padding=1),
Inception(480,192,96,208,16,48,64),
)
self.classifer_max_pool = torch.nn.MaxPool1d(5,3)
self.classifer = torch.nn.Sequential(
torch.nn.Linear(2048,1024),
torch.nn.Dropout(0.5),
torch.nn.ReLU(),
torch.nn.Linear(1024,512),
torch.nn.Dropout(0.5),
torch.nn.ReLU(),
torch.nn.Linear(512,classes),
)
self.Inception_4b = Inception(512,160,112,224,24,64,64)
self.Inception_4c = Inception(512,128,128,256,24,64,64)
self.Inception_4d = Inception(512,112,144,288,32,64,64)
self.classifer1 = torch.nn.Sequential(
torch.nn.Linear(2112,1056),
torch.nn.Dropout(0.5),
torch.nn.ReLU(),
torch.nn.Linear(1056,528),
torch.nn.Dropout(0.5),
torch.nn.ReLU(),
torch.nn.Linear(528,classes),
)
self.Inception_4e = Inception(528,256,160,320,32,128,128)
self.max_pool = torch.nn.MaxPool1d(3,2,1)
self.Inception_5a = Inception(832,256,160,320,32,128,128)
self.Inception_5b = Inception(832,384,192,384,48,128,128)
self.avg_pool = torch.nn.AvgPool1d(7,stride=1)
self.dropout = torch.nn.Dropout(0.4)
self.classifer2 = torch.nn.Sequential(
torch.nn.Linear(1024, 512),
torch.nn.Dropout(0.5),
torch.nn.ReLU(),
torch.nn.Linear(512, classes),
)
def forward(self,x):
x = self.features(x)
y = self.classifer(self.classifer_max_pool(x).view(-1,2048))
x = self.Inception_4b(x)
x = self.Inception_4c(x)
x = self.Inception_4d(x)
y1 = self.classifer1(self.classifer_max_pool(x).view(-1,2112))
x = self.Inception_4e(x)
x = self.max_pool(x)
x = self.Inception_5a(x)
x = self.Inception_5b(x)
x = self.avg_pool(x)
x = self.dropout(x)
x = x.view(-1,1024)
x = self.classifer2(x)
return x,y,y1
class GoogLeNetLoss(torch.nn.Module):
def __init__(self):
super(GoogLeNetLoss, self).__init__()
self.CrossEntropyLoss = torch.nn.CrossEntropyLoss()
def forward(self,data,label):
c2_loss = self.CrossEntropyLoss(data[0],label)
c0_loss = self.CrossEntropyLoss(data[1],label)
c1_loss = self.CrossEntropyLoss(data[2],label)
loss = c2_loss + 0.3*(c0_loss+c1_loss)
return loss
if __name__ == '__main__':
model = GoogLeNet()
input = torch.randn(size=(2,2,224))
# [c2,c0,c1] = model(input)
output = model(input)
criterion = GoogLeNetLoss()
label = torch.tensor([1,0])
print(f"损失为:{criterion(output,label)}")
print(f"输出结果为{output}")
print(model)
summary(model=model, input_size=(2, 224), device='cpu')
输出结果如下
损失为:2.53948974609375
输出结果为(tensor([[-0.0974, -0.0311, 0.0815, -0.0201, -0.1416],
[ 0.3268, -0.1535, -0.0960, -0.0373, 0.0472]],
grad_fn=<AddmmBackward>), tensor([[ 0.2001, -0.4010, -0.0270, -0.5973, 0.4724],
[-0.0031, -0.0116, 0.2749, -0.0630, -0.1351]],
grad_fn=<AddmmBackward>), tensor([[ 0.0689, -0.1227, 0.3872, -0.3770, -0.0234],
[ 0.0773, 0.8251, 0.1869, -0.2420, 0.2121]],
grad_fn=<AddmmBackward>))
GoogLeNet(
(features): Sequential(
(0): Linear(in_features=224, out_features=224, bias=True)
(1): Conv1d(2, 64, kernel_size=(7,), stride=(2,), padding=(3,))
(2): MaxPool1d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(3): Conv1d(64, 192, kernel_size=(3,), stride=(1,), padding=(1,))
(4): MaxPool1d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(5): Inception(
(branch1): Sequential(
(0): Conv1d(192, 64, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch3): Sequential(
(0): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(96, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch5): Sequential(
(0): Conv1d(192, 16, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(16, 32, kernel_size=(5,), stride=(1,), padding=(2,))
(3): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch_pool): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(192, 32, kernel_size=(1,), stride=(1,))
)
)
(6): Inception(
(branch1): Sequential(
(0): Conv1d(256, 128, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch3): Sequential(
(0): Conv1d(256, 128, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(128, 192, kernel_size=(3,), stride=(1,), padding=(1,))
(3): BatchNorm1d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch5): Sequential(
(0): Conv1d(256, 32, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(32, 96, kernel_size=(5,), stride=(1,), padding=(2,))
(3): BatchNorm1d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch_pool): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(256, 64, kernel_size=(1,), stride=(1,))
)
)
(7): MaxPool1d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(8): Inception(
(branch1): Sequential(
(0): Conv1d(480, 192, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch3): Sequential(
(0): Conv1d(480, 96, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(96, 208, kernel_size=(3,), stride=(1,), padding=(1,))
(3): BatchNorm1d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch5): Sequential(
(0): Conv1d(480, 16, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(16, 48, kernel_size=(5,), stride=(1,), padding=(2,))
(3): BatchNorm1d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch_pool): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(480, 64, kernel_size=(1,), stride=(1,))
)
)
)
(classifer_max_pool): MaxPool1d(kernel_size=5, stride=3, padding=0, dilation=1, ceil_mode=False)
(classifer): Sequential(
(0): Linear(in_features=2048, out_features=1024, bias=True)
(1): Dropout(p=0.5, inplace=False)
(2): ReLU()
(3): Linear(in_features=1024, out_features=512, bias=True)
(4): Dropout(p=0.5, inplace=False)
(5): ReLU()
(6): Linear(in_features=512, out_features=5, bias=True)
)
(Inception_4b): Inception(
(branch1): Sequential(
(0): Conv1d(512, 160, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch3): Sequential(
(0): Conv1d(512, 112, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(112, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(112, 224, kernel_size=(3,), stride=(1,), padding=(1,))
(3): BatchNorm1d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch5): Sequential(
(0): Conv1d(512, 24, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(24, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch_pool): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(512, 64, kernel_size=(1,), stride=(1,))
)
)
(Inception_4c): Inception(
(branch1): Sequential(
(0): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch3): Sequential(
(0): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(3): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch5): Sequential(
(0): Conv1d(512, 24, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(24, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch_pool): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(512, 64, kernel_size=(1,), stride=(1,))
)
)
(Inception_4d): Inception(
(branch1): Sequential(
(0): Conv1d(512, 112, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(112, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch3): Sequential(
(0): Conv1d(512, 144, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(144, 288, kernel_size=(3,), stride=(1,), padding=(1,))
(3): BatchNorm1d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch5): Sequential(
(0): Conv1d(512, 32, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(32, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch_pool): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(512, 64, kernel_size=(1,), stride=(1,))
)
)
(classifer1): Sequential(
(0): Linear(in_features=2112, out_features=1056, bias=True)
(1): Dropout(p=0.5, inplace=False)
(2): ReLU()
(3): Linear(in_features=1056, out_features=528, bias=True)
(4): Dropout(p=0.5, inplace=False)
(5): ReLU()
(6): Linear(in_features=528, out_features=5, bias=True)
)
(Inception_4e): Inception(
(branch1): Sequential(
(0): Conv1d(528, 256, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch3): Sequential(
(0): Conv1d(528, 160, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(160, 320, kernel_size=(3,), stride=(1,), padding=(1,))
(3): BatchNorm1d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch5): Sequential(
(0): Conv1d(528, 32, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(32, 128, kernel_size=(5,), stride=(1,), padding=(2,))
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch_pool): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(528, 128, kernel_size=(1,), stride=(1,))
)
)
(max_pool): MaxPool1d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(Inception_5a): Inception(
(branch1): Sequential(
(0): Conv1d(832, 256, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch3): Sequential(
(0): Conv1d(832, 160, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(160, 320, kernel_size=(3,), stride=(1,), padding=(1,))
(3): BatchNorm1d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch5): Sequential(
(0): Conv1d(832, 32, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(32, 128, kernel_size=(5,), stride=(1,), padding=(2,))
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch_pool): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(832, 128, kernel_size=(1,), stride=(1,))
)
)
(Inception_5b): Inception(
(branch1): Sequential(
(0): Conv1d(832, 384, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch3): Sequential(
(0): Conv1d(832, 192, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(192, 384, kernel_size=(3,), stride=(1,), padding=(1,))
(3): BatchNorm1d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch5): Sequential(
(0): Conv1d(832, 48, kernel_size=(1,), stride=(1,))
(1): BatchNorm1d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv1d(48, 128, kernel_size=(5,), stride=(1,), padding=(2,))
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(branch_pool): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(832, 128, kernel_size=(1,), stride=(1,))
)
)
(avg_pool): AvgPool1d(kernel_size=(7,), stride=(1,), padding=(0,))
(dropout): Dropout(p=0.4, inplace=False)
(classifer2): Sequential(
(0): Linear(in_features=1024, out_features=512, bias=True)
(1): Dropout(p=0.5, inplace=False)
(2): ReLU()
(3): Linear(in_features=512, out_features=5, bias=True)
)
)
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Linear-1 [-1, 2, 224] 50,400
Conv1d-2 [-1, 64, 112] 960
MaxPool1d-3 [-1, 64, 56] 0
Conv1d-4 [-1, 192, 56] 37,056
MaxPool1d-5 [-1, 192, 28] 0
Conv1d-6 [-1, 64, 28] 12,352
BatchNorm1d-7 [-1, 64, 28] 128
Conv1d-8 [-1, 96, 28] 18,528
BatchNorm1d-9 [-1, 96, 28] 192
Conv1d-10 [-1, 128, 28] 36,992
BatchNorm1d-11 [-1, 128, 28] 256
Conv1d-12 [-1, 16, 28] 3,088
BatchNorm1d-13 [-1, 16, 28] 32
Conv1d-14 [-1, 32, 28] 2,592
BatchNorm1d-15 [-1, 32, 28] 64
MaxPool1d-16 [-1, 192, 28] 0
Conv1d-17 [-1, 32, 28] 6,176
Inception-18 [-1, 256, 28] 0
Conv1d-19 [-1, 128, 28] 32,896
BatchNorm1d-20 [-1, 128, 28] 256
Conv1d-21 [-1, 128, 28] 32,896
BatchNorm1d-22 [-1, 128, 28] 256
Conv1d-23 [-1, 192, 28] 73,920
BatchNorm1d-24 [-1, 192, 28] 384
Conv1d-25 [-1, 32, 28] 8,224
BatchNorm1d-26 [-1, 32, 28] 64
Conv1d-27 [-1, 96, 28] 15,456
BatchNorm1d-28 [-1, 96, 28] 192
MaxPool1d-29 [-1, 256, 28] 0
Conv1d-30 [-1, 64, 28] 16,448
Inception-31 [-1, 480, 28] 0
MaxPool1d-32 [-1, 480, 14] 0
Conv1d-33 [-1, 192, 14] 92,352
BatchNorm1d-34 [-1, 192, 14] 384
Conv1d-35 [-1, 96, 14] 46,176
BatchNorm1d-36 [-1, 96, 14] 192
Conv1d-37 [-1, 208, 14] 60,112
BatchNorm1d-38 [-1, 208, 14] 416
Conv1d-39 [-1, 16, 14] 7,696
BatchNorm1d-40 [-1, 16, 14] 32
Conv1d-41 [-1, 48, 14] 3,888
BatchNorm1d-42 [-1, 48, 14] 96
MaxPool1d-43 [-1, 480, 14] 0
Conv1d-44 [-1, 64, 14] 30,784
Inception-45 [-1, 512, 14] 0
MaxPool1d-46 [-1, 512, 4] 0
Linear-47 [-1, 1024] 2,098,176
Dropout-48 [-1, 1024] 0
ReLU-49 [-1, 1024] 0
Linear-50 [-1, 512] 524,800
Dropout-51 [-1, 512] 0
ReLU-52 [-1, 512] 0
Linear-53 [-1, 5] 2,565
Conv1d-54 [-1, 160, 14] 82,080
BatchNorm1d-55 [-1, 160, 14] 320
Conv1d-56 [-1, 112, 14] 57,456
BatchNorm1d-57 [-1, 112, 14] 224
Conv1d-58 [-1, 224, 14] 75,488
BatchNorm1d-59 [-1, 224, 14] 448
Conv1d-60 [-1, 24, 14] 12,312
BatchNorm1d-61 [-1, 24, 14] 48
Conv1d-62 [-1, 64, 14] 7,744
BatchNorm1d-63 [-1, 64, 14] 128
MaxPool1d-64 [-1, 512, 14] 0
Conv1d-65 [-1, 64, 14] 32,832
Inception-66 [-1, 512, 14] 0
Conv1d-67 [-1, 128, 14] 65,664
BatchNorm1d-68 [-1, 128, 14] 256
Conv1d-69 [-1, 128, 14] 65,664
BatchNorm1d-70 [-1, 128, 14] 256
Conv1d-71 [-1, 256, 14] 98,560
BatchNorm1d-72 [-1, 256, 14] 512
Conv1d-73 [-1, 24, 14] 12,312
BatchNorm1d-74 [-1, 24, 14] 48
Conv1d-75 [-1, 64, 14] 7,744
BatchNorm1d-76 [-1, 64, 14] 128
MaxPool1d-77 [-1, 512, 14] 0
Conv1d-78 [-1, 64, 14] 32,832
Inception-79 [-1, 512, 14] 0
Conv1d-80 [-1, 112, 14] 57,456
BatchNorm1d-81 [-1, 112, 14] 224
Conv1d-82 [-1, 144, 14] 73,872
BatchNorm1d-83 [-1, 144, 14] 288
Conv1d-84 [-1, 288, 14] 124,704
BatchNorm1d-85 [-1, 288, 14] 576
Conv1d-86 [-1, 32, 14] 16,416
BatchNorm1d-87 [-1, 32, 14] 64
Conv1d-88 [-1, 64, 14] 10,304
BatchNorm1d-89 [-1, 64, 14] 128
MaxPool1d-90 [-1, 512, 14] 0
Conv1d-91 [-1, 64, 14] 32,832
Inception-92 [-1, 528, 14] 0
MaxPool1d-93 [-1, 528, 4] 0
Linear-94 [-1, 1056] 2,231,328
Dropout-95 [-1, 1056] 0
ReLU-96 [-1, 1056] 0
Linear-97 [-1, 528] 558,096
Dropout-98 [-1, 528] 0
ReLU-99 [-1, 528] 0
Linear-100 [-1, 5] 2,645
Conv1d-101 [-1, 256, 14] 135,424
BatchNorm1d-102 [-1, 256, 14] 512
Conv1d-103 [-1, 160, 14] 84,640
BatchNorm1d-104 [-1, 160, 14] 320
Conv1d-105 [-1, 320, 14] 153,920
BatchNorm1d-106 [-1, 320, 14] 640
Conv1d-107 [-1, 32, 14] 16,928
BatchNorm1d-108 [-1, 32, 14] 64
Conv1d-109 [-1, 128, 14] 20,608
BatchNorm1d-110 [-1, 128, 14] 256
MaxPool1d-111 [-1, 528, 14] 0
Conv1d-112 [-1, 128, 14] 67,712
Inception-113 [-1, 832, 14] 0
MaxPool1d-114 [-1, 832, 7] 0
Conv1d-115 [-1, 256, 7] 213,248
BatchNorm1d-116 [-1, 256, 7] 512
Conv1d-117 [-1, 160, 7] 133,280
BatchNorm1d-118 [-1, 160, 7] 320
Conv1d-119 [-1, 320, 7] 153,920
BatchNorm1d-120 [-1, 320, 7] 640
Conv1d-121 [-1, 32, 7] 26,656
BatchNorm1d-122 [-1, 32, 7] 64
Conv1d-123 [-1, 128, 7] 20,608
BatchNorm1d-124 [-1, 128, 7] 256
MaxPool1d-125 [-1, 832, 7] 0
Conv1d-126 [-1, 128, 7] 106,624
Inception-127 [-1, 832, 7] 0
Conv1d-128 [-1, 384, 7] 319,872
BatchNorm1d-129 [-1, 384, 7] 768
Conv1d-130 [-1, 192, 7] 159,936
BatchNorm1d-131 [-1, 192, 7] 384
Conv1d-132 [-1, 384, 7] 221,568
BatchNorm1d-133 [-1, 384, 7] 768
Conv1d-134 [-1, 48, 7] 39,984
BatchNorm1d-135 [-1, 48, 7] 96
Conv1d-136 [-1, 128, 7] 30,848
BatchNorm1d-137 [-1, 128, 7] 256
MaxPool1d-138 [-1, 832, 7] 0
Conv1d-139 [-1, 128, 7] 106,624
Inception-140 [-1, 1024, 7] 0
AvgPool1d-141 [-1, 1024, 1] 0
Dropout-142 [-1, 1024, 1] 0
Linear-143 [-1, 512] 524,800
Dropout-144 [-1, 512] 0
ReLU-145 [-1, 512] 0
Linear-146 [-1, 5] 2,565
================================================================
Total params: 9,425,087
Trainable params: 9,425,087
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 2.84
Params size (MB): 35.95
Estimated Total Size (MB): 38.79
----------------------------------------------------------------
Process finished with exit code 0
如果需要训练模板,可以在下面的浩浩的科研笔记中的付费资料购买,赠送所有一维神经网络模型的经典代码,可以在模板中随意切换。