- Java与机器学习的邂逅:Weka框架入门指南
墨夶
Java学习资料1java机器学习数据挖掘
在这个数据驱动的时代,机器学习已经成为各行业创新和优化的关键技术。而Java,作为一门成熟且广泛应用的编程语言,在企业级应用开发中占据着重要地位。将二者结合起来,利用Java实现机器学习算法,不仅可以充分发挥其强大的生态系统优势,还能为开发者提供一个高效、稳定的开发环境。今天,我们将带您走进Java与机器学习的世界,探索如何使用Weka这一著名的机器学习库来开启您的智能之旅。Weka简介及其优势什
- FPGA相关通信问题详解
霖12
fpga开发笔记信号处理信息与通信学习开发语言
首先感谢大佬@征途黯然.-CSDN博客的就我的上篇文章《FPGA通信设计十问》提出的问题,我在此做出回复一.解释FFT(快速傅里叶变换)如何在FPGA的IP核中高效实现FFT作为将时域信号转换为频域的核心算法,其在FPGA中的高效实现依赖于硬件架构与算法特性的深度适配。1.流水线架构:提升吞吐量FFT的核心是“蝶形运算”,其计算过程可分解为log2(N)级(N为FFT点数),每级包含N/2次蝶形运
- Sequential Thinking:AI深度思考的新范式及其与CoT、ReAct的对比分析
码字的字节
人工智能SequentialCoTReAct
引言:AI深度思考的演进与SequentialThinking的崛起在人工智能技术快速发展的今天,AI模型的思考能力正经历着从简单应答到深度推理的革命性转变。这一演进过程不仅反映了技术本身的进步,更体现了人类对机器智能认知边界的持续探索。早期的大语言模型虽然能够生成流畅的文本,但在处理复杂问题时往往表现出"浅思考"的局限性——答案可能看似合理,却缺乏严谨的推理过程和系统性考量。例如,2022年的一
- 一元线性回归模型与最小二乘法
liuzx32
监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线
- 华为OD机考 2025C卷 - 围棋的气 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD机试2025C卷华为OD机考2025C卷华为OD2025C卷
围棋的气华为OD机试真题目录点击查看:华为OD机试2025C卷真题题库目录|机考题库+算法考点详解华为OD机试2025C卷100分题型题目描述围棋棋盘由纵横各19条线垂直相交组成,棋盘上一共19x19=361个交点,对弈双方一方执白棋,一方执黑棋,落子时只能将棋子置于交点上。“气”是围棋中很重要的一个概念,某个棋子有几口气,是指其上下左右方向四个相邻的交叉点中,有几个交叉点没有棋子,由此可知:在棋
- 华为OD机考 2025C卷 - 对称美学 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD机试2025C卷华为OD2025C卷华为OD机考2025C卷
对称美学华为OD机试真题目录点击查看:华为OD机试2025C卷真题题库目录|机考题库+算法考点详解华为OD机试2025C卷100分题型题目描述对称就是最大的美学,现有一道关于对称字符串的美学。已知:第1个字符串:R第2个字符串:BR第3个字符串:RBBR第4个字符串:BRRBRBBR第5个字符串:RBBRBRRBBRRBRBBR相信你已经发现规律了,没错!就是第i个字符串=第i-1号字符串取反+第
- 华为OD机试 2025 B卷 - We are a Team (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD2025B卷华为OD机考2025B卷华为OD机试2025B卷华为OD机试
WeareaTeam华为OD机试真题目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解华为OD机试2025B卷100分题型题目描述总共有n个人在机房,每个人有一个标号(1<=标号<=n),他们分成了多个团队,需要你根据收到的m条消息判定指定的两个人是否在一个团队中,具体的:消息构成为abc,整数a、b分别代表两个人的标号,整数c代表指令c==0代表a和b在一个团队内c==1
- 华为OD 面试手撕真题目录
无限码力
华为OD面试手撕代码真题合集华为od面试华为OD面试手撕真题
华为OD面试手撕真题目录,收集的都是实际面试出现过的手撕代码真题,对于是力扣原题的我会在对应题目博客中给出对应对应链接,推荐自己写代码去通过。华为OD机试2025B卷真题题库目录|机考题库+算法考点详解目录序号题目名称考点1求1-n的最小公倍数数学原理2判断是IPV4还是IPV6字符串、模拟3旋转矩阵模拟4
- 数据并表技术全面指南:从基础JOIN到分布式数据融合
熊猫钓鱼>_>
分布式
引言在现代数据处理和分析领域,数据并表(TableJoin)技术是连接不同数据源、整合分散信息的核心技术。随着企业数据规模的爆炸式增长和数据源的日益多样化,传统的数据并表方法面临着前所未有的挑战:性能瓶颈、内存限制、数据倾斜、一致性问题等。如何高效、准确地进行大规模数据并表,已成为数据工程师和架构师必须掌握的关键技能。数据并表不仅仅是简单的SQLJOIN操作,它涉及数据建模、算法优化、分布式计算、
- Datawhale X 魔塔 Ai夏令营 --深度学习基础
一、局部极小值与全局极小值全局极小值:在损失函数的整个定义域内,损失值最小的点。这是我们在训练深度学习模型时希望找到的点,因为它代表着模型的最佳性能。局部极小值:在损失函数的一个局部区域内,损失值达到最小,但在整个函数定义域内可能不是最小的。当优化算法陷入局部极小值时,它可能会误以为已经找到了全局最优解,从而停止搜索。局部极小值的检测两种直观的方法来检测局部极小值:可视化方法:对于低维问题,我们可
- Unet源码实现(pytorch)
wyn20001128
pytorch人工智能python
U-Net是一种用于生物医学图像分割的卷积神经网络架构。它通过引入一种新颖的网络结构和训练策略解决了传统方法在数据量不足时面临的挑战。U-Net的主要思想是利用数据增强技术来高效利用有限的标注样本,并通过独特的网络设计来提高分割精度。主要贡献U-Net的主要贡献包括:1、数据增强策略:使用随机弹性变形和其他形式的数据增强来增加训练数据的多样性,从而在有限的数据集上训练出更强大的模型。2、U形网络结
- pytorch的学习笔记
wyn20001128
算法
一cuda 2006年,NVIDIA公司发布了CUDA(ComputeUnifiedDeviceArchitecture),是一种新的操作GPU计算的硬件和软件架构,是建立在NVIDIA的GPUs上的一个通用并行计算平台和编程模型,它提供了GPU编程的简易接口,基于CUDA编程可以构建基于GPU计算的应用程序。 CPU是用于负责逻辑性比较强的计算,GPU专注于执行高度线程化的并行处理任务。所以
- 深度学习模块实践手册(第十二期)
加油吧zkf
目标检测目标检测模块解析与实践深度学习人工智能计算机视觉目标检测python
56、Ghost模块论文《GhostNet:MoreFeaturesfromCheapOperations》1、作用:Ghost模块是一种轻量级的特征提取模块,旨在通过廉价操作生成更多特征图,减少计算量的同时保持模型性能。传统卷积神经网络在生成特征图时存在大量冗余计算,Ghost模块通过将特征图生成过程分解为两个步骤,有效减少了计算复杂度,特别适合移动端和嵌入式设备部署。2、机制Ghost模块的机
- 算法工程师必看!个性化信息流推荐算法系统的架构设计与优化实战指南
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】推荐算法系统实战全系列精品课【陈敬雷】文章目录推荐算法系统系列二算法工程师必看!个性化信息流推荐算法系统的架构设计与优化实战指南更多技术内容总结推荐算法系统系列二算
- c语言找出递增子数组的长度,C语言实现最长递增子序列问题的解决方法
梁肖松
c语言找出递增子数组的长度
本文实例展示了C语言实现最长递增子序列问题的解决方法。分享给大家供大家参考。具体方法如下:问题描述:给定一个序列,找出其最长递增子序列长度。比如输入1375输出3算法解决思路:利用动态规划的思想,以序列的每个点最为最右端,找出每个点作为最右端时的子序列长度的最大值,即问题的求解。因此,在计算前面的每个点的时候,将其结果保存下来,后面的点与前面的点的数值进行比较,如果大,则在其长度基础上加1,并且找
- 基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解
基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解文章目录基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解1.RELM原理2.分类问题求解3.基于探路者算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN
- 基于探路者算法优化的核极限学习机(KELM)分类算法
智能算法研学社(Jack旭)
智能优化算法应用机器学习#核极限学习机(KELM)算法分类数据挖掘
基于探路者算法优化的核极限学习机(KELM)分类算法文章目录基于探路者算法优化的核极限学习机(KELM)分类算法1.KELM理论基础2.分类问题3.基于探路者算法优化的KELM4.测试结果5.Matlab代码摘要:本文利用探路者算法对核极限学习机(KELM)进行优化,并用于分类1.KELM理论基础核极限学习机(KernelBasedExtremeLearningMachine,KELM)是基于极限
- 035_ClaudeCode_MCP_介绍
义薄云天us
ClaudeCode菜鸟到高手专栏ClaudeCode机器学习深度学习mcp
035_ClaudeCode_MCP_介绍摘要ModelContextProtocol(MCP)是一个开放的标准化协议,专为大型语言模型提供上下文数据而设计。作为ClaudeCode生态系统的重要组成部分,MCP如同"AI应用程序的USB-C端口",提供了将AI模型连接到不同数据源和工具的标准化方式。本文全面介绍MCP的核心概念、架构设计和在ClaudeCode中的应用场景。目录什么是ModelC
- 算力网异构协同与能效优化驱动工业物联及智慧民生实践
内容概要算力网络作为数字基础设施的核心载体,正通过异构协同架构与能效优化框架的深度融合,构建起支撑工业物联网与智慧民生应用的技术底座。随着边缘计算节点的快速部署与模型压缩技术的突破性发展,工业场景中的设备健康检测与实时故障分析已实现毫秒级响应,典型应用场景包括产线异常识别、设备寿命预测等关键领域。与此同时,数据预处理技术的迭代升级有效缓解了工业传感器数据维度爆炸带来的算力压力,通过特征提取与噪声过
- LeetCode第337题_打家劫舍III
@蓝莓果粒茶
算法leetcode算法职场和发展c#学习
LeetCode第337题:打家劫舍III文章摘要本文详细解析LeetCode第337题"打家劫舍III",这是一道中等难度的二叉树动态规划问题。文章提供了基于深度优先搜索和动态规划的解法,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合想要提升二叉树和动态规划能力的程序员。核心知识点:二叉树、动态规划、深度优先搜索难度等级:中等推荐人群:具有基础数据结构知识,想要提
- LangChain 源码剖析(八):对话记忆的 “智能管家“_RunnableWithMessageHistory
ATM006
机器智能人工智能langchainAgent大模型
每一篇文章都短小精悍,不啰嗦。一、功能定位:给Runnable装上"对话记忆"在聊天机器人、客服系统等场景中,多轮对话是核心需求——用户不会每次都重复历史信息,系统需要记住之前说过什么。RunnableWithMessageHistory就是为解决这个问题而生的组件:它像一个"智能管家",给原本只能处理单次输入的Runnable(如大模型调用链)装上"记忆功能",自动管理对话历史的加载、合并和保存
- 深度学习模块实践手册(第十一期)
加油吧zkf
目标检测目标检测模块解析与实践深度学习人工智能计算机视觉目标检测python
46、缩放点积注意力模块论文《AttentionIsAllYouNeed》1、作用:缩放点积注意力(ScaledDot-ProductAttention)是Transformer模型的核心组件,旨在解决序列建模中长距离依赖关系捕捉的问题。传统的循环神经网络(RNN)在处理长序列时存在梯度消失或爆炸的问题,且并行性较差。该模块通过计算查询(Query)、键(Key)和值(Value)之间的相似度,实
- 基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
摘要:在数字化商业生态中,用户留存与核心用户培育是产品成功的关键。本文聚焦开源AI大模型、AI智能名片与S2B2C商城小程序源码的协同应用,探讨如何通过技术赋能实现用户价值引导与核心用户沉淀。研究结合工业品供应链、美妆品牌、健康食品行业等案例,提出“认知渗透-行为引导-价值沉淀”的三阶段策略,验证了技术组合在提升用户活跃度、延长生命周期、促进商业价值转化方面的有效性。关键词:开源AI大模型;AI智
- 动态分析软件:DYNA3D_(12).优化与校准
优化与校准在动态分析软件的二次开发中,优化与校准是提高模型准确性和效率的关键步骤。通过优化,可以减少计算时间、提高计算精度,而校准则确保模型的预测结果与实际试验数据相匹配。本节将详细探讨优化与校准的原理和方法,并提供具体的代码示例和数据样例。优化原理优化是指在有限的计算资源和时间内,通过调整模型参数或结构,使模型达到最佳性能的过程。在动态分析软件中,优化通常涉及以下几个方面:模型参数优化:调整材料
- 动态分析软件:DYNA3D_(5).材料模型
材料模型在进行动态分析时,材料模型的选择和定义是至关重要的一步。DYNA3D提供了多种材料模型,以适应不同的物理现象和材料特性。本节将详细介绍几种常用的材料模型,并通过具体的例子说明如何在仿真中进行配置和使用。1.线弹性材料模型线弹性材料模型是最简单的材料模型之一,适用于在小变形范围内线性响应的材料。这种模型假设材料的应力与应变之间存在线性关系,即符合胡克定律。线弹性材料模型通常用于金属材料在低应
- C++ | 基于PCL与CloudCompare的投影点密度法(DOPP)开发实战
河工点云智绘WangG
点云深处CloudCompare&PCL开发c++开发语言
一、算法原理与详细步骤1.算法原理DOPP是一种用于点云地面滤波的算法,通过将三维点云投影到二维平面,并分析投影点密度的分布特征来区分地面点与非地面点(如植被、建筑物等)。其核心思想是:地面点在投影平面上通常呈现均匀且低密度的分布,而建筑物点等非地面点则密度高。DOPP本质是二维密度场分析,将三维分离问题转化为二维空间密度统计问题。2.算法详细步骤(1)点云投影(Projection)将三维点云沿
- C++ | 玩转点云:CloudCompare & PCL原生开发核心指南与示例分享
河工点云智绘WangG
点云深处CloudCompare&PCL开发c++开发语言
还在为点云处理的效率瓶颈和功能限制发愁吗?面对点云处理个性需求,是否让你感到束手束脚?调试困难、性能受限、定制化需求难以满足...本次分享将带你深入核心,走进点云深处,揭秘如何直接运用C++进行CloudCompare&PCL的原生集成开发。掌握核心步骤,规避常见陷阱,并附实用开发示例源码。助你:效率飙升:直达底层,性能最大化!灵活无限:自由定制算法流程,深度集成业务逻辑!掌控全局:彻底理解框架机
- 零基础学习性能测试第一章-为什么会有性能问题
试着
性能测试学习性能测试零基础
目录零基础性能测试:第一章-为什么会有性能问题?一、性能问题本质分析(黄金三角模型)1.资源不足的典型表现2.设计缺陷的灾难案例3.使用不当的五大雷区二、性能问题排查工具箱(即学即用)1.快速诊断命令表2.性能问题自检流程图3.真实工作场景解决方案三、性能优化的核心原则1.优化优先级法则2.必须避免的优化误区3.优化效果验证公式四、工作应用:性能问题排查清单1.五分钟快速检查表2.性能问题诊断报告
- Java:对给定的字符串和给定的模式执行Boyer-Moore搜索算法(附带源码)
Katie。
Java算法完整教程java开发语言
一、项目背景详细介绍在文本处理与信息检索中,需要在海量文本中高效地查找模式串(Pattern)。经典的朴素搜素在最坏情况下时间复杂度为O(N·M),效率不够高。Boyer–Moore算法则采用“坏字符”与“好后缀”两种启发规则,从模式尾部匹配开始,通常能大幅跳过不可能匹配的位置,平均时间复杂度接近O(N/M),在实际应用(如grep、数据库索引)中非常高效。本项目旨在用Java实现Boyer–Mo
- Java:实现Ternary search三元搜索算法(附带源码)
Katie。
Java算法完整教程算法
一、项目背景详细介绍在计算机科学与软件工程领域,查找算法是最基础也是最重要的模块之一。对于有序数组的查找,经典的二分(Binary)查找算法凭借O(log N)的时间复杂度在许多场景中被广泛应用。另一方面,三元(Ternary)查找作为对二分查找的扩展,将区间划分为三段,每次比对两个“探测点”而非一个,从理论上也能达到对数级时间复杂度。三元查找常用于以下几种场景:函数极值查找当我们要在一个unim
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在