- 发文新思路!双通道CNN的惊人突破,准确率接近100%!
沃恩智慧
深度学习人工智能cnn人工智能神经网络
双通道CNN作为一种创新的卷积神经网络架构,正引领深度学习领域的新趋势。其核心优势在于并行卷积层设计,能够同时处理更多特征信息,从而显著提升模型的特征表示能力和识别精度。这种架构不仅提高了计算效率,还有效降低了过拟合风险,使其在复杂视觉任务中表现卓越。例如,最新的研究提出了一种名为DDTransUNet的混合网络,结合了Transformer和CNN的优势,通过双分支编码器和双重注意力机制,有效解
- 超级实用!一个基于python的简化版深度学习框架,包括深度学习神经网络的设计和深度学习模型的设计,适用于中小型项目的开发和实现
大懒猫软件
深度学习python神经网络numpypytorch人工智能
一、运用Python技术开发深度学习框架需要具备的基础知识总结开发一个基于Python的深度学习框架是一个复杂的任务,需要具备多方面的基础知识。以下是一些关键领域的总结,帮助你更好地准备和理解开发深度学习框架所需的知识。1.Python编程基础语法和数据结构:掌握Python的基本语法、数据类型(如列表、字典、元组等)和控制流(如循环、条件语句等)。函数和模块:理解函数的定义和使用,以及如何组织代
- 详解AI作画算法原理
Jimaks
后端AIpythonai作画python人工智能
在艺术与科技的交汇处,AI作画正以惊人的创造力刷新着我们对美的认知。这一领域融合了深度学习、计算机视觉和生成模型的前沿技术,让机器能够“想象”并创作出令人惊叹的图像。本文将深入浅出地探讨AI作画的核心算法原理,分析常见问题与易错点,并通过一个简单的代码示例,带领大家一窥AI艺术创作的奥秘。一、核心概念与原理1.生成对抗网络(GANs)GANs是AI作画中最著名的算法之一,由IanGoodfello
- 用大模型学大模型02-数学基础 微积分
wyg_031113
人工智能
https://metaso.cn/s/uxPBB9C我正在学习深度学习相关的数学知识,学到了微积分核心概念:导数(尤其是偏导数)、梯度、链式法则;积分与最优化(如梯度下降法的数学推导)给我一个入门级的完整教程和实例好吧,我现在需要帮用户整理一个关于深度学习中微积分核心概念的入门教程和实例。用户提到了导数、偏导数、梯度、链式法则,还有积分和优化比如梯度下降法。我得先理清楚这些概念之间的联系,然后结
- 用大模型学大模型03-数学基础 概率论
wyg_031113
概率论人工智能
https://metaso.cn/s/Jp0OU9w提示词:我正在学习深度学习相关的数学知识,学到了概率论与统计学部分,给我一个入门级的完整教程和实例。好的,我现在需要回答用户关于深度学习所需的概率论与统计学入门教程和实例的问题。用户希望得到一个完整的教程和实例,所以我要从我搜索到的资料中整理出相关的知识点和学习路径,并结合实例说明。首先,查看证据中的相关内容。提到花书学习笔记,涵盖了概率论、信
- 焦损函数(Focal Loss)与RetinaNet目标检测模型详解
人工智能
焦损函数(FocalLoss)与RetinaNet目标检测模型详解阅读时长:19分钟发布时间:2025-02-14近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】目前,精度最高的目标检测器大多基于由R-CNN推广的两阶段方法,即对稀疏的候选目标位置集应用分类器。相比之下,在规则、密集的可
- python 并行框架_基于python的高性能实时并行机器学习框架之Ray介绍
weixin_39778582
python并行框架
前言加州大学伯克利分校实时智能安全执行实验室(RISELab)的研究人员已开发出了一种新的分布式框架,该框架旨在让基于Python的机器学习和深度学习工作负载能够实时执行,并具有类似消息传递接口(MPI)的性能和细粒度。这种框架名为Ray,看起来有望取代Spark,业界认为Spark对于一些现实的人工智能应用而言速度太慢了;过不了一年,Ray应该会准备好用于生产环境。目前ray已经发布了0.3.0
- PyTorch 与 TensorFlow 的深度解析:全面比较两大深度学习框架,助你选择最适合的工具
BuluAI
深度学习pytorchtensorflow
在人工智能的浪潮中,深度学习框架成为了开发者们的得力助手。PyTorch和TensorFlow作为其中的佼佼者,各自拥有庞大的用户群体和强大的社区支持。但它们在设计理念、使用体验和应用场景上有着显著的差异。今天,我们就来深入探讨这两个框架的特点,帮助你在项目中做出更明智的选择。计算图的构建方式PyTorch的动态图机制是其一大特色。在PyTorch中,计算图是在程序运行时动态构建的,这使得开发者可
- DeepSeek R1:引领未来教育革命的自适应学习路径规划系统
Coderabo
DeepSeekR1模型企业级应用学习人工智能机器学习算法python深度学习
自适应学习路径规划概述自适应学习路径规划是指通过分析用户的学习行为和需求,动态调整学习内容和顺序,以提供个性化、高效的学习体验。在当今快速发展的教育科技领域,这一概念变得尤为重要。随着人工智能技术的进步,特别是深度学习和强化学习的应用,我们能够更加精准地识别学习者的需求,并据此设计出最适合他们的学习路径。利用先进的算法和模型来实现对学习路径的智能化管理。该系统能够实时监控学习者的进度,根据其表现调
- 【一起看花书1.3】——第5章 机器学习基础
应有光
基础知识机器学习人工智能深度学习
先验是“知识”,是合理的假设本文内容对应于原书的5.7-5.11共5小节内容,其中知识性、结论性的内容偏多,也加入了点个人见解。目录:5.7监督学习5.8无监督学习5.9随机梯度下降5.10构建机器学习算法5.11深度学习发展的动力5.7监督学习监督学习,本质上是复杂函数的拟合,即给定特征xxx,我们需要得到标签yyy,这不就是求一个函数的拟合嘛?线性回归是比较简单的,从高代、概率论就可以理解,甚
- 《探秘Hogwild!算法:无锁并行SGD的神奇之路》
人工智能深度学习
在深度学习和机器学习的领域中,优化算法的效率和性能一直是研究的重点。Hogwild!算法作为一种能够实现无锁并行随机梯度下降(SGD)的创新方法,受到了广泛关注。下面就来深入探讨一下Hogwild!算法是如何实现这一壮举的。基础原理铺垫随机梯度下降(SGD)算法是基于梯度下降算法产生的常见优化算法。其目标是优化损失函数,通过对每一个超参数求偏导得到当前轮的梯度,然后向梯度的反方向更新,不断迭代以获
- 【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
机器学习司猫白
深度学习人工智能resnet神经网络残差
深入探讨ResNet:解决深度神经网络训练问题的革命性架构随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(ResidualNetworks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。本文将详细介绍R
- 探索序列数据的奥秘:LSTM Python代码资源库全面解析
霍列领Hector
探索序列数据的奥秘:LSTMPython代码资源库全面解析【下载地址】LSTMPython代码LSTMPython代码项目地址:https://gitcode.com/open-source-toolkit/36f26在深度学习的浩瀚宇宙中,长短期记忆网络(LSTM)犹如一颗璀璨的明星,以其独特魅力照亮了序列数据分析之路。今天,我们带你深入了解一个专注于LSTM在Python环境中实现的开源项目—
- LowCode 低代码平台集成 AI 大模型会产生怎样的化学反应?
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型架构师必知必会系列ChatGPT低代码人工智能
LowCode低代码平台集成AI大模型会产生怎样的化学反应?低代码平台(LowCodePlatform)是一种新型的应用开发方式,它将应用开发的过程简化为“拖拽组件、配置属性、生成代码”的方式,使得应用开发变得更加简单和快捷。而AI大模型(AIBigModel)则是一种利用深度学习技术构建的大规模神经网络,它可以对海量数据进行训练和预测,从而实现各种智能化的应用。本文将探讨低代码平台集成AI大模型
- 使⽤MATLAB进⾏⽬标检测
唐BiuBiu
机器学习matlab开发语言目标检测深度学习
目录数据准备定义模型并训练用测试集评估性能推理过程⼀⾏代码查看⽹络结构⼀⾏代码转onnx结语⼈⽣苦短,我⽤MATLAB。Pytorch在深度学习领域占据了半壁江⼭,最主要的原因是⽣态完善,⽽且api直观易⽤。但谁能想到现在MATLAB⽤起来⽐Pytorch还好⽤。从数据集划分到训练,再到性能验证和画图,仅仅使⽤了⼏⼗⾏代码。炼丹师们终于可以解放编码时间,把⾃⼰的精⼒放在摸⻥(划掉)算法本身上了。下
- 大语言模型(LLM)快速理解
大模型猫叔
语言模型人工智能自然语言处理机器学习
自2022年,ChatGPT发布之后,大语言模型(LargeLanguageModel),简称LLM掀起了一波狂潮。作为学习理解LLM的开始,先来整体理解一下大语言模型。一、发展历史大语言模型的发展历史可以追溯到早期的语言模型和机器翻译系统,但其真正的起点可以说是随着深度学习技术的兴起而开始。1.1统计语言模型在深度学习技术出现之前,语言模型主要基于传统的统计方法,也称为统计语言模型(SLM)。S
- 【机器学习】探索未来科技的前沿:人工智能、机器学习与大模型
E绵绵
Everything人工智能科技机器学习大模型pythonAIGC应用
文章目录引言一、人工智能:从概念到现实1.1人工智能的定义1.2人工智能的发展历史1.3人工智能的分类1.4人工智能的应用二、机器学习:人工智能的核心技术2.1机器学习的定义2.2机器学习的分类2.3机器学习的实现原理2.4机器学习的应用2.5机器学习的示例代码2.6解释代码三、大模型:推动AI前沿发展的关键技术3.1大模型的定义3.2大模型的发展历程3.3深度学习与神经网络3.4大模型的优势与挑
- 26、深度学习-自学之路-NLP自然语言处理-理解加程序,怎么把现实的词翻译给机器识别。
小宇爱
深度学习-自学之路深度学习自然语言处理人工智能
一、怎么能让机器能够理解我们的语言呢,我们可以利用神经网络干很多的事情,那么我们是不是也可以用神经元做自然语言处理呢,现在很多的实际应用已经说明了这个问题,可以这么做。那我们考虑一下该怎么做,首先我们应该把我们现实中的每一个单词都用一个词向量来进行表示:importnumpyasnponehots={}onehots['cat']=np.array([1,0,0,0])onehots['the']
- 25、深度学习-自学之路-卷积神经网络基于MNIST数据集的程序展示
小宇爱
深度学习-自学之路深度学习cnn人工智能
importkeras#添加Keraskuimportsys,numpyasnpfromkeras.utilsimportnp_utilsimportosfromkeras.datasetsimportmnistprint("licheng:"+"20"+'\n')np.random.seed(1)(x_train,y_train),(x_test,y_test)=mnist.load_data(
- 24、深度学习-自学之路-卷积神经网络
小宇爱
深度学习-自学之路深度学习cnn人工智能
一、你怎么理解卷积神经网络呢,我的理解是当你看一个东西的时候,你的眼睛距离图片越近,你看到的东西就越清晰,但是如果你看到的图片只是整个物体的一小部分,那么你将不知道你看到的物品是什么,因为关注整体更容易知道物品是什么。如果你保持一定的距离,你就会发现你可以看到物品更加的全貌一些,这样将方便你观察物品的类别。如果你距离的再远一点,你就会看到物品的轮廓,那么你将依据物品的轮廓去判断物品的类别。如果图片
- 9、深度学习-自学之路-损失函数、梯度下降、学习率、权重更新的理解
小宇爱
深度学习-自学之路深度学习学习人工智能
由《8、深度学习-自学之路-损失函数和梯度下降程序展示》我们看到我们设计了一个程序,这个程序里面由学习率,有损失函数,有梯度下降,权重更新。一、我们先来讲一下损失函数,e_dn=(p_dn-ture)**2#损失值的计算p_dn:预测值ture:真实值e_dn:损失值我们在第7章说了,我们的预测值和真实值相差越小(也就是损失值越小),说明我们模型训练的越好。这个也是我们进行模型训练的原因。我们使用
- 深度学习-10-深度学习发展简介
皮皮冰燃
深度学习深度学习
2016年一月底,人工智能的研究领域,发生了两件大事。先是一月二十四号,MIT(麻省理工学院MassachusettsInstituteofTechnology)的教授,人工智能研究的先驱者,MarvinMinsky去世,享年89岁。极具讽刺意义的是,Minsky教授,一直不看好深度学习的概念。他曾在1969年出版了Perceptron(感知器)一书,指出了神经网络技术(就是深度学习的前身)的局限
- cnn以及例子
阿拉斯攀登
机器学习cnn人工智能神经网络
cnnCNN即卷积神经网络(ConvolutionalNeuralNetwork),是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型,在计算机视觉、语音识别等诸多领域都有广泛应用。以下是CNN的详细介绍:基本原理卷积层:是CNN的核心组成部分,通过卷积核在数据上滑动进行卷积操作,自动提取数据中的局部特征。例如,在处理图像时,卷积核可以检测图像中的边缘、线条等简单特征。卷积操作大
- 27、深度学习-自学之路-NLP自然语言处理-做一个简单的项目识别一组电影评论,来判断电影评论是积极的,还是消极的。
小宇爱
深度学习-自学之路深度学习自然语言处理人工智能
一、如果我们要做这个项目,第一步我们要做的就是需要有对应的训练数据集。这里提供两个数据集,一个是原始评论数据集《reviews.txt》,以及对应的评论是消极还是积极的数据集《labels.txt》,下面的程序就是找到这两个数据集,并把对应的数据集的内容分别赋值给reviews和labelsdefpretty_print_review_and_label(i):print(labels[i]+"\
- 大数据、云计算、人工智能等技术深度融合的智慧快消开源了。
AI服务老曹
大数据云计算人工智能音视频运维
智慧快消视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。基于多年的深度学习技术研究和业务应用为基础,集深度学习核心训练和推理框架、基础模型库、端到端开发套件、丰富的工具组件于一体,是中国首个自主研发、功能完备、开源开放的产业级深度学习平台。基
- 《深度解析:批量、随机和小批量梯度下降的区别与应用》
人工智能深度学习
在机器学习和深度学习的领域中,梯度下降算法是优化模型参数的核心工具之一。而批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降(MBGD)是梯度下降算法的三种常见变体,它们在计算效率、收敛速度和准确性等方面各有特点。原理与计算方式批量梯度下降(BGD):BGD在每次迭代时,都会使用整个训练数据集来计算损失函数的梯度,然后根据梯度更新模型参数。例如,若训练集中有1000个样本,那么每次迭代
- 【深度学习入门实战】基于Keras的手写数字识别实战(附完整可视化分析)
机器学习司猫白
深度学习深度学习keras人工智能机器学习python
本人主页:机器学习司猫白ok,话不多说,我们进入正题吧项目概述本案例使用经典的MNIST手写数字数据集,通过Keras构建全连接神经网络,实现0-9数字的分类识别。文章将包含:关键概念图解完整实现代码训练过程可视化模型效果深度分析环境准备importnumpyasnpimportmatplotlib.pyplotaspltfromtensorflowimportkerasfromtensorflo
- 模型实战(19)之 从头搭建yolov9环境+tensorrt部署+CUDA前处理 -> 实现目标检测
明月醉窗台
#深度学习实战例程目标检测人工智能计算机视觉图像处理YOLO
从头搭建yolov9环境+tensorrt部署实现目标检测yolov9虚拟环境搭建实现训练、推理与导出导出onnx并转为tensorrt模型Python\C++-trt实现推理,CUDA实现图像前处理文中将给出详细实现源码python、C++效果如下:output_video_11.搭建环境拉下官方代码根据配置下载虚拟环境所需包详细步骤如下:
- 我的创作纪念日
学无止尽5
经验分享
CSDN创作者纪念日256:数字背后的机缘在CSDN的创作旅程中,每一个纪念日都意义非凡,而“256”这一数字,更是与我有着千丝万缕的独特机缘。1.记录学习,见证成长日常学习过程中的记录,也是我创作的重要初衷。技术领域发展日新月异,为了紧跟前沿,我不断学习新的知识,如人工智能中的深度学习框架、云计算的最新技术应用等。在学习过程中,我将遇到的难点、理解的过程以及总结的知识点记录下来,整理成文章发布在
- 计算机视觉四大任务模型汇总
Zero_one_ws
《神经网络与深度学习》理论计算机视觉人工智能深度学习图像分类图像目标检测目标分割关键点检测
计算机视觉中有四大核心任务:1-分类任务、2-目标检测任务、3-目标分割任务和4-关键点检测任务文章1:一文读懂计算机视觉4大任务文章2:图像的目标分割任务:语义分割和实例分割不同任务之间相关但不完全相同,因此不同的任务最好选择相应的模型,话不多说,看表:(注:表中github链接并不一定是模型的正式版本,只是本文用于展示模型的网络结构和应用)1-分类任务模型序号模型ipynb模型的github链
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息