pytorch 常用loss函数整理篇(三)

pytorch 常用loss函数整理篇(三)

  • 1.SSIM及MS-SSIM Loss介绍
    • 1.1 SSIM Loss相关公式
    • 1.2 MS-SSIM Loss相关公式
  • 2.SSIM及MS-SSIM Loss pytorch实现代码
  • 参考文献

之前介绍的常用Loss函数见:
pytorch 常用loss函数整理篇(一)
pytorch 常用loss函数整理篇(二)

本文主要介绍SSIM(structural similarity index)与MS-SSIM(multi-scale
structural similarity index) Loss。SSIM和MS-SSIM,作为评价图像质量的重要指标,其LOSS函数,作为一种perceptual Loss可以用于弥补pixel-wise Loss(如L1、L2 Loss)的不足。

1.SSIM及MS-SSIM Loss介绍

这部分介绍主要参考了https://arxiv.org/pdf/1511.08861.pdf。

1.1 SSIM Loss相关公式

对于两张图中的某一像素位置 p p p,其SSIM定义为:

S S I M ( p ) = 2 μ x μ y + C 1 μ x 2 + μ y 2 + C 1 ⋅ 2 σ x y + C 2 σ x 2 + σ y 2 + C 2    = l ( p ) ⋅ c s ( p ) \qquad\qquad SSIM(p)=\cfrac{2\mu_x\mu_y+C_1}{\mu_x^2+\mu_y^2+C_1} \cdot \cfrac{2\sigma_{xy}+C_2} {\sigma_x^2+\sigma_y^2+C_2}\\\qquad\qquad\qquad\quad\quad\ \ =l(p)\cdot cs(p) SSIM(p)=μx2+μy2+C12μxμy+C1σx2+σy2+C22σxy+C2  =l(p)cs(p)

其中,均值和标准差的计算通过高斯滤波器 G σ G G_{\sigma G} GσG实现( σ G \sigma_G σG为其标准差)。

则SSIM Loss:
L S S I M = 1 N ∑ p ∈ P 1 − S S I M ( p ) \qquad\qquad L_{SSIM}=\cfrac{1}{N} \sum\limits_{p \in P}1-SSIM(p) LSSIM=N1pP1SSIM(p)

1.2 MS-SSIM Loss相关公式

MS-SSIM主要是为了克服SSIM中 σ G \sigma_G σG由人为设定,引入的一种multi-scale的方法。若设置M个scale/level,则MS-SSIM公式可表示为:

m s s s i m ( p ) = l M ( p ) ∗ ∏ j = 1 M c s j ( p ) \qquad\qquad msssim(p)=l_M(p)*\prod\limits_{j=1}^{M}cs_j(p) msssim(p)=lM(p)j=1Mcsj(p)

式中 l ( p ) , c s ( p ) l(p),cs(p) l(p),cs(p)与SSIM公式一致。

相应的,MS-SSIM Loss:

L m s s s i m = 1 N ∑ p ∈ P 1 − m s s s i m ( p ) \qquad\qquad L_{msssim}=\cfrac{1}{N} \sum\limits_{p \in P}1- msssim(p) Lmsssim=N1pP1msssim(p)

2.SSIM及MS-SSIM Loss pytorch实现代码

import torch
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from math import exp

def type_trans(window,img):
    if img.is_cuda:
        window = window.cuda(img.get_device())
    return window.type_as(img)

def gaussian(window_size, sigma):
    gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
    return gauss/gauss.sum()

def create_window(window_size, channel):
    _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
    _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
    window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
    return window

def _ssim(img1, img2, window, window_size, channel, size_average = True):

    mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)
    mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)
    # print(mu1.shape,mu2.shape)

    mu1_sq = mu1.pow(2)
    mu2_sq = mu2.pow(2)
    mu1_mu2 = mu1*mu2

    sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
    sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
    sigma12   = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2

    C1 = 0.01**2
    C2 = 0.03**2

    ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
    mcs_map  = (2.0 * sigma12 + C2)/(sigma1_sq + sigma2_sq + C2)
    # print(ssim_map.shape)
    if size_average:
        return ssim_map.mean(), mcs_map.mean()
    # else:
    #     return ssim_map.mean(1).mean(1).mean(1)

class SSIM(torch.nn.Module):
    def __init__(self, window_size = 11, size_average = True):
        super(SSIM, self).__init__()
        self.window_size = window_size
        self.size_average = size_average

    def forward(self, img1, img2):
        _, channel, _, _ = img1.size()
        window = create_window(self.window_size,channel)
        window = type_trans(window,img1)
        ssim_map, mcs_map =_ssim(img1, img2, window, self.window_size, channel, self.size_average)
        return ssim_map


class MS_SSIM(torch.nn.Module):
    def __init__(self, window_size = 11,size_average = True):
        super(MS_SSIM, self).__init__()
        self.window_size = window_size
        self.size_average = size_average
        # self.channel = 3

    def forward(self, img1, img2, levels=5):

        weight = Variable(torch.Tensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]))

        msssim = Variable(torch.Tensor(levels,))
        mcs    = Variable(torch.Tensor(levels,))

        if torch.cuda.is_available():
            weight =weight.cuda()
            msssim=msssim.cuda()
            mcs=mcs.cuda()

        _, channel, _, _ = img1.size()
        window = create_window(self.window_size,channel)
        window = type_trans(window,img1)

        for i in range(levels): #5 levels
            ssim_map, mcs_map = _ssim(img1, img2,window,self.window_size, channel, self.size_average)
            msssim[i] = ssim_map
            mcs[i] = mcs_map
            # print(img1.shape)
            filtered_im1 = F.avg_pool2d(img1, kernel_size=2, stride=2)
            filtered_im2 = F.avg_pool2d(img2, kernel_size=2, stride=2)
            img1 = filtered_im1 #refresh img
            img2 = filtered_im2

        return torch.prod((msssim[levels-1]**weight[levels-1] * mcs[0:levels-1]**weight[0:levels-1]))
        # return torch.prod((msssim[levels-1] * mcs[0:levels-1]))
        #torch.prod: Returns the product of all elements in the input tensor


# ########################  example ######################
if __name__=='__main__':
    from torch import optim
    import cv2
    npImg1 = cv2.imread("einstein.png")

    img1 = torch.from_numpy(np.rollaxis(npImg1, 2)).float().unsqueeze(0)/255.0 #进行了归一化
    img2 = torch.rand(img1.size())

    if torch.cuda.is_available():
        img1 = img1.cuda()
        img2 = img2.cuda()

    img1 = Variable( img1,  requires_grad=False)
    img2 = Variable( img2, requires_grad = True)

########################  SSIM ######################
    # Functional: pytorch_ssim.ssim(img1, img2, window_size = 11, size_average = True)

    ssim_loss = SSIM()
    ssim_value = ssim_loss(img1, img2).data
    # # print("Initial ssim:", ssim_value)

    optimizer = optim.Adam([img2], lr=0.1)

    while ssim_value < 0.2:
        optimizer.zero_grad()
        ssim_out = -ssim_loss(img1, img2)
        ssim_value = - ssim_out.data
        print(ssim_value)
        ssim_out.backward()
        optimizer.step()

########################  MS_SSIM ######################
    ms_ssim_loss = MS_SSIM()
    optimizer = optim.Adam([img2], lr=0.01)

    ms_ssim_value = ms_ssim_loss(img1, img2).data
    # print("Initial ssim:", msssim_value)

    while ms_ssim_value<0.2:
        optimizer.zero_grad()
        ms_ssim_out = -ms_ssim_loss(img1, img2)
        ms_ssim_value = - ms_ssim_out.data
        print(ms_ssim_value)
        ms_ssim_out.backward()
        optimizer.step()

参考文献

[1] Loss Functions for Image Restoration with Neural Networks
[2] SSIM Loss代码实现
[3] MS-SSIM Loss代码实现

你可能感兴趣的:(深度学习,深度学习)