第十二章 无穷级数

本章先讨论常数项级数,介绍无穷级数的一些基本内容,然后讨论函数项级数,着重讨论如何将函数展开成幂级数和三角级数的问题。——高等数学同济版

目录

  • 习题12-1 常数项级数的概念和性质
    • 3.判定下列级数的收敛性:
      • (3) 1 3 + 1 3 + 1 3 3 + ⋯ + 1 3 n + ⋯   ; \cfrac{1}{3}+\cfrac{1}{\sqrt{3}}+\cfrac{1}{\sqrt[3]{3}}+\cdots+\cfrac{1}{\sqrt[n]{3}}+\cdots; 31+3 1+33 1++n3 1+;
    • 4.利用柯西审敛原理判定下列级数的收敛性:
      • (1) ∑ n = 1 ∞ ( − 1 ) n + 1 n ; \displaystyle\sum^{\infty}\limits_{n=1}\cfrac{(-1)^{n+1}}{n}; n=1n(1)n+1;
      • (2) 1 + 1 2 − 1 3 + 1 4 + 1 5 − 1 6 + ⋯ + 1 3 n − 2 + 1 3 n − 1 − 1 3 n + ⋯   ; 1+\cfrac{1}{2}-\cfrac{1}{3}+\cfrac{1}{4}+\cfrac{1}{5}-\cfrac{1}{6}+\cdots+\cfrac{1}{3n-2}+\cfrac{1}{3n-1}-\cfrac{1}{3n}+\cdots; 1+2131+41+5161++3n21+3n113n1+;
  • 习题12-2 常数项级数的审敛法
    • 2.用比值审敛法判定下列级数的收敛性:
      • (3) ∑ n = 1 ∞ 2 n ⋅ n ! n n ; \displaystyle\sum^{\infty}\limits_{n=1}\cfrac{2^n\cdot n!}{n^n}; n=1nn2nn!;
  • 习题12-3 幂级数
    • 2.利用逐项求导或逐项积分,求下列级数的和函数:
      • (2) ∑ n = 1 ∞ x 4 n + 1 4 n + 1 ; \displaystyle\sum^{\infty}\limits_{n=1}\cfrac{x^{4n+1}}{4n+1}; n=14n+1x4n+1;
  • 习题12-4 函数展开成幂级数
    • 2.将下列函数展开成的幂级数,并求展开式成立的区间:
      • (2) ln ⁡ ( a + x ) ( a > 0 ) ; \ln(a+x)(a>0); ln(a+x)(a>0);
      • (6) x 1 + x 2 . \cfrac{x}{\sqrt{1+x^2}}. 1+x2 x.
    • 3.将下列函数展开成 x − 1 x-1 x1的幂级数,并求展开式成立的区间:
      • (1) x 3 ; \sqrt{x^3}; x3 ;
  • 习题12-5 函数的幂级数展开式的应用
  • 习题12-6 函数项级数的一致收敛性及一致收敛级数的基本性质
  • 习题12-7 傅里叶级数
    • 7.设周期函数 f ( x ) f(x) f(x)的周期为 2 π 2\pi 2π。证明:
      • (1)若 f ( x − π ) = − f ( x ) f(x-\pi)=-f(x) f(xπ)=f(x),则 f ( x ) f(x) f(x)的傅里叶系数 a 0 = 0 , a 2 k = 0 , b 2 k = 0 ( k = 1 , 2 , ⋯   ) a_0=0,a_{2k}=0,b_{2k}=0(k=1,2,\cdots) a0=0,a2k=0,b2k=0(k=1,2,)
  • 习题12-8 一般周期函数的傅里叶级数
  • 总习题十二
    • 5.设级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty\limits_{n=1}u_n n=1un收敛,且 lim ⁡ n → ∞ v n u n = 1 \lim\limits_{n\to\infty}\cfrac{v_n}{u_n}=1 nlimunvn=1。问级数 ∑ n = 1 ∞ v n \displaystyle\sum^\infty\limits_{n=1}v_n n=1vn是否也收敛?试说明理由。
    • 6.讨论下列级数的绝对收敛性与条件收敛性:
      • (3) ∑ n = 1 ∞ ( − 1 ) n ln ⁡ n + 1 n ; \displaystyle\sum^\infty\limits_{n=1}(-1)^n\ln\cfrac{n+1}{n}; n=1(1)nlnnn+1;
    • 7.求下列极限:
      • (1) lim ⁡ n → ∞ 1 n ∑ k = 1 n 1 3 k ( 1 + 1 k ) k 2 ; \lim\limits_{n\to\infty}\cfrac{1}{n}\displaystyle\sum^n\limits_{k=1}\cfrac{1}{3^k}\left(1+\cfrac{1}{k}\right)^{k^2}; nlimn1k=1n3k1(1+k1)k2;
    • 8.求下列幂级数的收敛区间:
      • (2) ∑ n = 1 ∞ ( 1 + 1 n ) n 2 x n ; \displaystyle\sum^\infty\limits_{n=1}\left(1+\cfrac{1}{n}\right)^{n^2}x^n; n=1(1+n1)n2xn;
    • 9.求下列幂级数的和函数:
      • (3) ∑ n = 1 ∞ n ( x − 1 ) n ; \displaystyle\sum^\infty\limits_{n=1}n(x-1)^n; n=1n(x1)n;
      • (4) ∑ n = 1 ∞ x n n ( n + 1 ) . \displaystyle\sum^\infty\limits_{n=1}\cfrac{x^n}{n(n+1)}. n=1n(n+1)xn.
    • 10.求下列数项级数的和:
      • (1) ∑ n = 1 ∞ n 2 n ! ; \displaystyle\sum^\infty\limits_{n=1}\cfrac{n^2}{n!}; n=1n!n2;
      • (2) ∑ n = 0 ∞ ( − 1 ) n n + 1 ( 2 n + 1 ) ! . \displaystyle\sum^\infty\limits_{n=0}(-1)^n\cfrac{n+1}{(2n+1)!}. n=0(1)n(2n+1)!n+1.
    • 11.将下列函数展开成的幂级数:
      • (1) ln ⁡ ( x + x 2 + 1 ) ; \ln(x+\sqrt{x^2+1}); ln(x+x2+1 );
  • 写在最后

习题12-1 常数项级数的概念和性质

  本节主要介绍了常数项级数的概念和性质。

3.判定下列级数的收敛性:

(3) 1 3 + 1 3 + 1 3 3 + ⋯ + 1 3 n + ⋯   ; \cfrac{1}{3}+\cfrac{1}{\sqrt{3}}+\cfrac{1}{\sqrt[3]{3}}+\cdots+\cfrac{1}{\sqrt[n]{3}}+\cdots; 31+3 1+33 1++n3 1+;

  此级数的一般项 u n = 1 3 n u_n=\cfrac{1}{\sqrt[n]{3}} un=n3 1,有 lim ⁡ n → ∞ u n = lim ⁡ n → ∞ ( 1 3 ) 1 n = 1 \lim\limits_{n\to\infty}u_n=\lim\limits_{n\to\infty}\left(\cfrac{1}{3}\right)^{\frac{1}{n}}=1 nlimun=nlim(31)n1=1,不满足级数收敛的必要条件,故该级数发散。(这道题主要利用了收敛级数的必要条件求解

4.利用柯西审敛原理判定下列级数的收敛性:

(1) ∑ n = 1 ∞ ( − 1 ) n + 1 n ; \displaystyle\sum^{\infty}\limits_{n=1}\cfrac{(-1)^{n+1}}{n}; n=1n(1)n+1;


∣ s n + p − s n ∣ = ∣ u n + 1 + u n + 2 + u n + 3 + ⋯ + u n + p ∣ = ∣ ( − 1 ) n + 2 n + 1 + ( − 1 ) n + 3 n + 2 + ( − 1 ) n + 4 n + 3 + ⋯ + ( − 1 ) n + p + 1 n + p ∣ = ∣ 1 n + 1 − 1 n + 2 + 1 n + 3 − ⋯ + ( − 1 ) p − 1 n + p ∣ . \begin{aligned} |s_{n+p}-s_n|&=|u_{n+1}+u_{n+2}+u_{n+3}+\cdots+u_{n+p}|\\ &=\left|\cfrac{(-1)^{n+2}}{n+1}+\cfrac{(-1)^{n+3}}{n+2}+\cfrac{(-1)^{n+4}}{n+3}+\cdots+\cfrac{(-1)^{n+p+1}}{n+p}\right|\\ &=\left|\cfrac{1}{n+1}-\cfrac{1}{n+2}+\cfrac{1}{n+3}-\cdots+\cfrac{(-1)^{p-1}}{n+p}\right|. \end{aligned} sn+psn=un+1+un+2+un+3++un+p=n+1(1)n+2+n+2(1)n+3+n+3(1)n+4++n+p(1)n+p+1=n+11n+21+n+31+n+p(1)p1.
  由于
1 n + 1 − 1 n + 2 + 1 n + 3 − ⋯ + ( − 1 ) p − 1 n + p = ( 1 n + 1 − 1 n + 2 ) + ( 1 n + 3 − 1 n + 4 ) + ⋯ + { 1 n + p , p 为奇数, 1 n + p − 1 − 1 n + p , p 为偶数. \begin{aligned} &\cfrac{1}{n+1}-\cfrac{1}{n+2}+\cfrac{1}{n+3}-\cdots+\cfrac{(-1)^{p-1}}{n+p}\\ =&\left(\cfrac{1}{n+1}-\cfrac{1}{n+2}\right)+\left(\cfrac{1}{n+3}-\cfrac{1}{n+4}\right)+\cdots+\begin{cases}\cfrac{1}{n+p},&p\text{为奇数,}\\\cfrac{1}{n+p-1}-\cfrac{1}{n+p},&p\text{为偶数.}\end{cases} \end{aligned} =n+11n+21+n+31+n+p(1)p1(n+11n+21)+(n+31n+41)++n+p1,n+p11n+p1,p为奇数,p为偶数.
  故
1 n + 1 − 1 n + 2 + 1 n + 3 − ⋯ + ( − 1 ) p − 1 n + p > 0 , ∀ p ∈ Z + . \cfrac{1}{n+1}-\cfrac{1}{n+2}+\cfrac{1}{n+3}-\cdots+\cfrac{(-1)^{p-1}}{n+p}>0,\forall p\in\bold{Z}^+. n+11n+21+n+31+n+p(1)p1>0,pZ+.
  于是,当 p p p为奇数时,
∣ s n + p − s n ∣ = 1 n + 1 − ( 1 n + 2 − 1 n + 3 ) − ⋯ ( 1 n + p − 1 − 1 n + p ) < 1 n + 1 . |s_{n+p}-s_n|=\cfrac{1}{n+1}-\left(\cfrac{1}{n+2}-\cfrac{1}{n+3}\right)-\cdots\left(\cfrac{1}{n+p-1}-\cfrac{1}{n+p}\right)<\cfrac{1}{n+1}. sn+psn=n+11(n+21n+31)(n+p11n+p1)<n+11.
  当 p p p为偶数时,
∣ s n + p − s n ∣ = 1 n + 1 − ( 1 n + 2 − 1 n + 3 ) − ⋯ ( 1 n + p − 2 − 1 n + p − 1 ) − 1 n + p < 1 n + 1 . |s_{n+p}-s_n|=\cfrac{1}{n+1}-\left(\cfrac{1}{n+2}-\cfrac{1}{n+3}\right)-\cdots\left(\cfrac{1}{n+p-2}-\cfrac{1}{n+p-1}\right)-\cfrac{1}{n+p}<\cfrac{1}{n+1}. sn+psn=n+11(n+21n+31)(n+p21n+p11)n+p1<n+11.
  因此,对任意给定的正数 ε \varepsilon ε,取正整数 N ⩾ 1 ε \bm{N}\geqslant\cfrac{1}{\varepsilon} Nε1,则当 n > N n>\bm{N} n>N时,对任何正整数 p p p,都有
∣ s n + p − s n ∣ < 1 n + 1 < 1 n < ε . |s_{n+p}-s_n|<\cfrac{1}{n+1}<\cfrac{1}{n}<\varepsilon. sn+psn<n+11<n1<ε.
  根据柯西收敛原理知,级数收敛。(这道题主要利用了奇偶两种情况讨论求解

(2) 1 + 1 2 − 1 3 + 1 4 + 1 5 − 1 6 + ⋯ + 1 3 n − 2 + 1 3 n − 1 − 1 3 n + ⋯   ; 1+\cfrac{1}{2}-\cfrac{1}{3}+\cfrac{1}{4}+\cfrac{1}{5}-\cfrac{1}{6}+\cdots+\cfrac{1}{3n-2}+\cfrac{1}{3n-1}-\cfrac{1}{3n}+\cdots; 1+2131+41+5161++3n21+3n113n1+;

  当 n n n 3 3 3的倍数时,如果取 p = 3 n p=3n p=3n,则必有
∣ s n + p − s n ∣ = ∣ 1 n + 1 + ( 1 n + 2 − 1 n + 3 ) + 1 n + 4 + ( 1 n + 5 − 1 n + 6 ) + ⋯ + 1 4 n − 2 + ( 1 4 n − 1 − 1 4 n ) ∣ > 1 n + 1 + 1 n + 4 + ⋯ + 1 4 n − 2 > 1 4 n + 1 4 n + ⋯ + 1 4 n ⏟ n 个 = 1 4 . \begin{aligned} |s_{n+p}-s_n|&=\left|\cfrac{1}{n+1}+\left(\cfrac{1}{n+2}-\cfrac{1}{n+3}\right)+\cfrac{1}{n+4}+\left(\cfrac{1}{n+5}-\cfrac{1}{n+6}\right)+\cdots+\cfrac{1}{4n-2}+\left(\cfrac{1}{4n-1}-\cfrac{1}{4n}\right)\right|\\ &>\cfrac{1}{n+1}+\cfrac{1}{n+4}+\cdots+\cfrac{1}{4n-2}>\underbrace{\cfrac{1}{4n}+\cfrac{1}{4n}+\cdots+\cfrac{1}{4n}}_{n\text{个}}=\cfrac{1}{4}. \end{aligned} sn+psn=n+11+(n+21n+31)+n+41+(n+51n+61)++4n21+(4n114n1)>n+11+n+41++4n21>n 4n1+4n1++4n1=41.
  于是对 ε 0 = 1 4 \varepsilon_0=\cfrac{1}{4} ε0=41,不论 N \bm{N} N为何正整数,当 n > N n>\bm{N} n>N n n n 3 3 3的倍数,且当 p = 3 n p=3n p=3n时,就有
∣ s n + p − s n ∣ > ε 0 . |s_{n+p}-s_n|>\varepsilon_0. sn+psn>ε0.
  根据柯西收敛原理知,级数发散。(这道题利用了收敛级数的定义求解

习题12-2 常数项级数的审敛法

  本节主要介绍了常数项级数的审敛法的求解。

2.用比值审敛法判定下列级数的收敛性:

(3) ∑ n = 1 ∞ 2 n ⋅ n ! n n ; \displaystyle\sum^{\infty}\limits_{n=1}\cfrac{2^n\cdot n!}{n^n}; n=1nn2nn!;

  因 lim ⁡ n → ∞ u n + 1 u n = lim ⁡ n → ∞ 2 n + 1 ⋅ ( n + 1 ) ! ( n + 1 ) n + 1 / 2 n ⋅ n ! n n = lim ⁡ n → ∞ 2 ( n n + 1 ) n = 2 e < 1 \lim\limits_{n\to\infty}\cfrac{u_{n+1}}{u_n}=\lim\limits_{n\to\infty}\cfrac{2^{n+1}\cdot (n+1)!}{(n+1)^{n+1}}\biggm/\cfrac{2^n\cdot n!}{n^n}=\lim\limits_{n\to\infty}2\left(\cfrac{n}{n+1}\right)^n=\cfrac{2}{e}<1 nlimunun+1=nlim(n+1)n+12n+1(n+1)!/nn2nn!=nlim2(n+1n)n=e2<1,故级数收敛。(这道题利用了比值审敛法求解

习题12-3 幂级数

  本节主要介绍了幂级数的相关计算。

2.利用逐项求导或逐项积分,求下列级数的和函数:

(2) ∑ n = 1 ∞ x 4 n + 1 4 n + 1 ; \displaystyle\sum^{\infty}\limits_{n=1}\cfrac{x^{4n+1}}{4n+1}; n=14n+1x4n+1;

  不难求出此级数的收敛半径为 1 1 1。当 − 1 < x < 1 -11<x<1时,
( ∑ n = 1 ∞ x 4 n + 1 4 n + 1 ) ′ = ∑ n = 1 ∞ ( x 4 n + 1 4 n + 1 ) ′ = ∑ n = 1 ∞ x 4 n = x 4 1 − x 4 . \left(\displaystyle\sum^{\infty}\limits_{n=1}\cfrac{x^{4n+1}}{4n+1}\right)'=\displaystyle\sum^{\infty}\limits_{n=1}\left(\cfrac{x^{4n+1}}{4n+1}\right)'=\displaystyle\sum^{\infty}\limits_{n=1}x^{4n}=\cfrac{x^4}{1-x^4}. (n=14n+1x4n+1)=n=1(4n+1x4n+1)=n=1x4n=1x4x4.
  在上式两端分别从 0 0 0 x x x积分,并由于 ∑ n = 1 ∞ x 4 n + 1 4 n + 1 \displaystyle\sum^{\infty}\limits_{n=1}\cfrac{x^{4n+1}}{4n+1} n=14n+1x4n+1 x = 0 x=0 x=0处收敛于 0 0 0,故得
∑ n = 1 ∞ x 4 n + 1 4 n + 1 = ∫ 0 x x 4 1 − x 4 d x = ∫ 0 x ( − 1 + 1 2 ⋅ 1 1 + x 2 + 1 2 ⋅ 1 1 − x 2 ) d x = 1 4 ln ⁡ 1 + x 1 − x + 1 2 arctan ⁡ x − x . \begin{aligned} \displaystyle\sum^{\infty}\limits_{n=1}\cfrac{x^{4n+1}}{4n+1}&=\displaystyle\int^x_0\cfrac{x^4}{1-x^4}\mathrm{d}x\\ &=\displaystyle\int^x_0\left(-1+\cfrac{1}{2}\cdot\cfrac{1}{1+x^2}+\cfrac{1}{2}\cdot\cfrac{1}{1-x^2}\right)\mathrm{d}x\\ &=\cfrac{1}{4}\ln\cfrac{1+x}{1-x}+\cfrac{1}{2}\arctan x-x. \end{aligned} n=14n+1x4n+1=0x1x4x4dx=0x(1+211+x21+211x21)dx=41ln1x1+x+21arctanxx.
  又原级数在 x = ± 1 x=\pm1 x=±1处发散,故它的和函数
s ( x ) = 1 4 ln ⁡ 1 + x 1 − x + 1 2 arctan ⁡ x − x ( − 1 < x < 1 ) . s(x)=\cfrac{1}{4}\ln\cfrac{1+x}{1-x}+\cfrac{1}{2}\arctan x-x\quad(-1s(x)=41ln1x1+x+21arctanxx(1<x<1).
这道题主要利用了逐项求导求解

习题12-4 函数展开成幂级数

  本节主要介绍了函数在某区间的幂级数展开。(部分函数展开式见附录一,传送门在这里)

2.将下列函数展开成的幂级数,并求展开式成立的区间:

(2) ln ⁡ ( a + x ) ( a > 0 ) ; \ln(a+x)(a>0); ln(a+x)(a>0);

   ln ⁡ ( a + x ) = ln ⁡ a + ln ⁡ ( 1 + x a ) \ln(a+x)=\ln a+\ln(1+\cfrac{x}{a}) ln(a+x)=lna+ln(1+ax),利用
ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n − 1 n x n , x ∈ ( − 1 , + 1 ] . \ln(1+x)=\sum^{\infty}\limits_{n=0}\cfrac{(-1)^{n-1}}{n}x^n,\quad x\in(-1,+1]. ln(1+x)=n=0n(1)n1xn,x(1,+1].
  得
ln ⁡ ( a + x ) = ∑ n = 0 ∞ ( − 1 ) n − 1 n ( x a ) n , x ∈ ( − a , + a ] . \ln(a+x)=\sum^{\infty}\limits_{n=0}\cfrac{(-1)^{n-1}}{n}\left(\cfrac{x}{a}\right)^n,\quad x\in(-a,+a]. ln(a+x)=n=0n(1)n1(ax)n,x(a,+a].
这道题主要利用了常用幂级数展开求解

(6) x 1 + x 2 . \cfrac{x}{\sqrt{1+x^2}}. 1+x2 x.

解一  利用 1 + x = 1 + 1 2 x − 1 2 ⋅ 4 x 2 + 1 ⋅ 3 2 ⋅ 4 ⋅ 6 x 3 − ⋯   , x ∈ [ − 1 , 1 ] \sqrt{1+x}=1+\cfrac{1}{2}x-\cfrac{1}{2\cdot4}x^2+\cfrac{1\cdot3}{2\cdot4\cdot6}x^3-\cdots,x\in[-1,1] 1+x =1+21x241x2+24613x3,x[1,1],并因为 ∫ 0 x x 1 + x 2 d x = 1 + x 2 − 1 \displaystyle\int^x_0\cfrac{x}{\sqrt{1+x^2}}\mathrm{d}x=\sqrt{1+x^2}-1 0x1+x2 xdx=1+x2 1,以 x 2 x^2 x2替换上面幂级数中的 x x x,得
∫ 0 x x 1 + x 2 d x = 1 + x 2 − 1 = 1 2 x 2 − 1 2 ⋅ 4 x 4 + 1 ⋅ 3 2 ⋅ 4 ⋅ 6 x 6 − ⋯ + ( − 1 ) n − 1 ⋅ 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 3 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n − 2 ) x 2 n − 1 + ⋯   . \begin{aligned} \displaystyle\int^x_0\cfrac{x}{\sqrt{1+x^2}}\mathrm{d}x&=\sqrt{1+x^2}-1\\ &=\cfrac{1}{2}x^2-\cfrac{1}{2\cdot4}x^4+\cfrac{1\cdot3}{2\cdot4\cdot6}x^6-\cdots+(-1)^{n-1}\cdot\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-3)}{2\cdot4\cdot6\cdot\cdots\cdot(2n-2)}x^{2n-1}+\cdots. \end{aligned} 0x1+x2 xdx=1+x2 1=21x2241x4+24613x6+(1)n1246(2n2)135(2n3)x2n1+.
  在 ( − 1 , 1 ) (-1,1) (1,1)内将上式两端对 x x x求导,得
x 1 + x 2 = x − 1 2 x 3 − 1 ⋅ 3 2 ⋅ 4 x 5 + 1 ⋅ 3 2 ⋅ 4 ⋅ 6 x 6 − ⋯ + ( − 1 ) n − 1 ⋅ 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 3 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n − 2 ) x 2 n − 1 + ⋯ = x + ∑ n = 2 ∞ ( − 1 ) n − 1 ⋅ 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 3 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n − 2 ) x 2 n − 1 = x + ∑ n = 1 ∞ ( − 1 ) n ⋅ 2 ( 2 n ) ! ( n ! ) 2 ( x 2 ) 2 n + 1 , x ∈ ( − 1 , 1 ) . \begin{aligned} \cfrac{x}{\sqrt{1+x^2}}&=x-\cfrac{1}{2}x^3-\cfrac{1\cdot3}{2\cdot4}x^5+\cfrac{1\cdot3}{2\cdot4\cdot6}x^6-\cdots+(-1)^{n-1}\cdot\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-3)}{2\cdot4\cdot6\cdot\cdots\cdot(2n-2)}x^{2n-1}+\cdots\\ &=x+\displaystyle\sum^{\infty}\limits_{n=2}(-1)^{n-1}\cdot\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-3)}{2\cdot4\cdot6\cdot\cdots\cdot(2n-2)}x^{2n-1}\\ &=x+\displaystyle\sum^{\infty}\limits_{n=1}(-1)^n\cdot\cfrac{2(2n)!}{(n!)^2}\left(\cfrac{x}{2}\right)^{2n+1},\quad x\in(-1,1). \end{aligned} 1+x2 x=x21x32413x5+24613x6+(1)n1246(2n2)135(2n3)x2n1+=x+n=2(1)n1246(2n2)135(2n3)x2n1=x+n=1(1)n(n!)22(2n)!(2x)2n+1,x(1,1).
  在 x = ± 1 x=\pm1 x=±1处上式右端的级数均收敛且函数 x 1 + x 2 \cfrac{x}{\sqrt{1+x^2}} 1+x2 x连续,故
x 1 + x 2 = x + ∑ n = 1 ∞ ( − 1 ) n ⋅ 2 ( 2 n ) ! ( n ! ) 2 ( x 2 ) 2 n + 1 , x ∈ [ − 1 , 1 ] . \cfrac{x}{\sqrt{1+x^2}}=x+\sum^{\infty}\limits_{n=1}(-1)^n\cdot\cfrac{2(2n)!}{(n!)^2}\left(\cfrac{x}{2}\right)^{2n+1},\quad x\in[-1,1]. 1+x2 x=x+n=1(1)n(n!)22(2n)!(2x)2n+1,x[1,1].
这道题主要利用了代换的方法求解

解二  将 x 2 x^2 x2替换展开式
1 1 + x = 1 + ∑ n = 1 ∞ ( − 1 ) n 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 1 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n ) x n , x ∈ [ − 1 , 1 ] . \cfrac{1}{\sqrt{1+x}}=1+\displaystyle\sum^{\infty}\limits_{n=1}(-1)^n\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2\cdot4\cdot6\cdot\cdots\cdot(2n)}x^n,\quad x\in[-1,1]. 1+x 1=1+n=1(1)n246(2n)135(2n1)xn,x[1,1].
  中的 x x x,得
1 1 + x 2 = 1 + ∑ n = 1 ∞ ( − 1 ) n 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 1 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n ) x 2 n , x ∈ [ − 1 , 1 ] . \cfrac{1}{\sqrt{1+x^2}}=1+\displaystyle\sum^{\infty}\limits_{n=1}(-1)^n\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2\cdot4\cdot6\cdot\cdots\cdot(2n)}x^{2n},\quad x\in[-1,1]. 1+x2 1=1+n=1(1)n246(2n)135(2n1)x2n,x[1,1].
  从而得
1 1 + x 2 = x + ∑ n = 1 ∞ ( − 1 ) n 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 1 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n ) x 2 n + 1 = x + ∑ n = 1 ∞ ( − 1 ) n ⋅ 2 ( 2 n ) ! ( n ! ) 2 ( x 2 ) 2 n + 1 , x ∈ [ − 1 , 1 ] . \begin{aligned} \cfrac{1}{\sqrt{1+x^2}}&=x+\displaystyle\sum^{\infty}\limits_{n=1}(-1)^n\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2\cdot4\cdot6\cdot\cdots\cdot(2n)}x^{2n+1}\\ &=x+\displaystyle\sum^{\infty}\limits_{n=1}(-1)^n\cdot\cfrac{2(2n)!}{(n!)^2}\left(\cfrac{x}{2}\right)^{2n+1},\quad x\in[-1,1]. \end{aligned} 1+x2 1=x+n=1(1)n246(2n)135(2n1)x2n+1=x+n=1(1)n(n!)22(2n)!(2x)2n+1,x[1,1].
这道题主要利用了代换的方法求解

3.将下列函数展开成 x − 1 x-1 x1的幂级数,并求展开式成立的区间:

(1) x 3 ; \sqrt{x^3}; x3 ;

  当 m > 0 m>0 m>0时,因
( 1 + x ) m = 1 + m a + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + ⋯   , x ∈ [ − 1 , 1 ] . (1+x)^m=1+ma+\cfrac{m(m-1)}{2!}x^2+\cdots+\cfrac{m(m-1)\cdots(m-n+1)}{n!}x^n+\cdots,\quad x\in[-1,1]. (1+x)m=1+ma+2!m(m1)x2++n!m(m1)(mn+1)xn+,x[1,1].
  而
x 3 = [ 1 + ( x − 1 ) ] 3 2 . \sqrt{x^3}=[1+(x-1)]^{\frac{3}{2}}. x3 =[1+(x1)]23.
  在以上二项展开式中取 m = 3 2 m=\cfrac{3}{2} m=23,并用 x − 1 x-1 x1替换其中的 x x x,得
x 3 = 1 + 3 2 ( x − 1 ) + 1 2 ! ⋅ 3 2 ( 3 2 − 1 ) ( x − 1 ) 2 + ⋯ + 1 n ! 3 2 ( 3 2 − 1 ) ⋅ ⋯ ⋅ ( 3 2 − n + 1 ) ( x − 1 ) n + ⋯ = 1 + 3 2 ( x − 1 ) + ∑ n = 0 ∞ 3 ⋅ ( − 1 ) n 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 1 ) 2 n + 2 ( n + 2 ) ! ( x − 1 ) n + 2 = 1 + 3 2 ( x − 1 ) + ∑ n = 1 ∞ ( − 1 ) n 2 ( 2 n ) ! ( n ! ) 2 ⋅ 3 ( n + 1 ) ( n + 2 ) 2 n ( x − 1 2 ) n + 2 , x ∈ [ 0 , 2 ] . \begin{aligned} \sqrt{x^3}&=1+\cfrac{3}{2}(x-1)+\cfrac{1}{2!}\cdot\cfrac{3}{2}\left(\cfrac{3}{2}-1\right)(x-1)^2+\cdots+\cfrac{1}{n!}\cfrac{3}{2}\left(\cfrac{3}{2}-1\right)\cdot\cdots\cdot\left(\cfrac{3}{2}-n+1\right)(x-1)^n+\cdots\\ &=1+\cfrac{3}{2}(x-1)+\sum^{\infty}\limits_{n=0}\cfrac{3\cdot(-1)^n1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2^{n+2}(n+2)!}(x-1)^{n+2}\\ &=1+\cfrac{3}{2}(x-1)+\sum^{\infty}\limits_{n=1}(-1)^n\cfrac{2(2n)!}{(n!)^2}\cdot\cfrac{3}{(n+1)(n+2)2^n}\left(\cfrac{x-1}{2}\right)^{n+2},\quad x\in[0,2]. \end{aligned} x3 =1+23(x1)+2!123(231)(x1)2++n!123(231)(23n+1)(x1)n+=1+23(x1)+n=02n+2(n+2)!3(1)n135(2n1)(x1)n+2=1+23(x1)+n=1(1)n(n!)22(2n)!(n+1)(n+2)2n3(2x1)n+2,x[0,2].
这道题主要利用了幂级数的直接展开求解

习题12-5 函数的幂级数展开式的应用

  本节主要介绍了函数的幂级数展开式的应用。(本节考研考纲未明确提出考察)

习题12-6 函数项级数的一致收敛性及一致收敛级数的基本性质

  本节主要介绍了级数的一致收敛性。(本节考研考纲未明确提出考察)

习题12-7 傅里叶级数

从本节开始,我们讨论由三角函数组成的函数项级数,即所谓三角级数,着重研究如何把函数展开成三角级数。——高等数学同济版

  本节主要傅里叶级数的概念和基本级计算。

7.设周期函数 f ( x ) f(x) f(x)的周期为 2 π 2\pi 2π。证明:

(1)若 f ( x − π ) = − f ( x ) f(x-\pi)=-f(x) f(xπ)=f(x),则 f ( x ) f(x) f(x)的傅里叶系数 a 0 = 0 , a 2 k = 0 , b 2 k = 0 ( k = 1 , 2 , ⋯   ) a_0=0,a_{2k}=0,b_{2k}=0(k=1,2,\cdots) a0=0,a2k=0,b2k=0(k=1,2,)


a 0 = 1 π [ ∫ − π 0 f ( x ) d x + ∫ 0 π f ( x ) d x ] = 1 π [ ∫ − π 0 f ( x ) d x + ∫ 0 π [ − f ( x − π ) ] d x ] . \begin{aligned} a_0&=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\mathrm{d}x+\displaystyle\int^\pi_0f(x)\mathrm{d}x\right]\\ &=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\mathrm{d}x+\displaystyle\int^\pi_0[-f(x-\pi)]\mathrm{d}x\right]. \end{aligned} a0=π1[π0f(x)dx+0πf(x)dx]=π1[π0f(x)dx+0π[f(xπ)]dx].
  在上式的第二个积分中令 x − π = u x-\pi=u xπ=u,则
a 0 = 1 π [ ∫ − π 0 f ( x ) d x − ∫ − π 0 f ( u ) d u ] = 0. a_0=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\mathrm{d}x-\displaystyle\int^0_{-\pi}f(u)\mathrm{d}u\right]=0. a0=π1[π0f(x)dxπ0f(u)du]=0.
  同理可得
a n = 1 π [ ∫ − π 0 f ( x ) cos ⁡ n x d x + ∫ 0 π f ( x ) cos ⁡ n x d x ] = 1 π [ ∫ − π 0 f ( x ) cos ⁡ n x d x + ∫ 0 π [ − f ( x − π ) ] cos ⁡ n x d x ] = 1 π [ ∫ − π 0 f ( x ) cos ⁡ n x d x − ∫ − π 0 f ( u ) cos ⁡ ( n π + n u ) d u ] . \begin{aligned} a_n&=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\cos nx\mathrm{d}x+\displaystyle\int^\pi_0f(x)\cos nx\mathrm{d}x\right]\\ &=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\cos nx\mathrm{d}x+\displaystyle\int^\pi_0[-f(x-\pi)]\cos nx\mathrm{d}x\right]\\ &=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\cos nx\mathrm{d}x-\displaystyle\int^0_{-\pi}f(u)\cos(n\pi+nu)\mathrm{d}u\right]. \end{aligned} an=π1[π0f(x)cosnxdx+0πf(x)cosnxdx]=π1[π0f(x)cosnxdx+0π[f(xπ)]cosnxdx]=π1[π0f(x)cosnxdxπ0f(u)cos(nπ+nu)du].
  及
b n = 1 π [ ∫ − π 0 f ( x ) sin ⁡ n x d x − ∫ − π 0 f ( u ) sin ⁡ ( n π + n u ) d u ] . b_n=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\sin nx\mathrm{d}x-\displaystyle\int^0_{-\pi}f(u)\sin(n\pi+nu)\mathrm{d}u\right]. bn=π1[π0f(x)sinnxdxπ0f(u)sin(nπ+nu)du].
  当 n = 2 k ( k ∈ N ∗ ) n=2k(k\in\bold{N}^*) n=2k(kN)时, cos ⁡ ( n π + n u ) = cos ⁡ n u , sin ⁡ ( n π + n u ) = sin ⁡ n u \cos(n\pi+nu)=\cos nu,\sin(n\pi+nu)=\sin nu cos(nπ+nu)=cosnu,sin(nπ+nu)=sinnu,于是有
a 2 k = 1 π [ ∫ − π 0 f ( x ) cos ⁡ 2 k x d x − ∫ − π 0 f ( u ) cos ⁡ 2 k u d u ] = 0. a_{2k}=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\cos 2kx\mathrm{d}x-\displaystyle\int^0_{-\pi}f(u)\cos2ku\mathrm{d}u\right]=0. a2k=π1[π0f(x)cos2kxdxπ0f(u)cos2kudu]=0.
  及
b 2 k = 0. ( k ∈ N ∗ ) . b_{2k}=0.\quad(k\in\bold{N}^*). b2k=0.(kN).
(这道题主要利用了傅里叶级数证明

习题12-8 一般周期函数的傅里叶级数

  本节主要介绍了一般周期函数的傅里叶级数的计算方法。

总习题十二

5.设级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty\limits_{n=1}u_n n=1un收敛,且 lim ⁡ n → ∞ v n u n = 1 \lim\limits_{n\to\infty}\cfrac{v_n}{u_n}=1 nlimunvn=1。问级数 ∑ n = 1 ∞ v n \displaystyle\sum^\infty\limits_{n=1}v_n n=1vn是否也收敛?试说明理由。

  级数 ∑ n = 1 ∞ v n \displaystyle\sum^\infty\limits_{n=1}v_n n=1vn不一定收敛。
  当 ∑ n = 1 ∞ u n \displaystyle\sum^\infty\limits_{n=1}u_n n=1un是正项级数时,在题设条件下 ∑ n = 1 ∞ v n \displaystyle\sum^\infty\limits_{n=1}v_n n=1vn必定收敛。因为 lim ⁡ n → ∞ v n u n = 1 \lim\limits_{n\to\infty}\cfrac{v_n}{u_n}=1 nlimunvn=1。根据收敛数列的保号性知,存在正整数 N N N,当 n ⩾ N n\geqslant N nN时有 v n u n > 0 \cfrac{v_n}{u_n}>0 unvn>0,即有 v n > 0 v_n>0 vn>0。于是,按正项级数的比较审敛法知 ∑ n = N ∞ v n \displaystyle\sum^\infty\limits_{n=N}v_n n=Nvn收敛,即 ∑ n = 1 ∞ v n \displaystyle\sum^\infty\limits_{n=1}v_n n=1vn收敛。
  当 ∑ n = 1 ∞ u n \sum^\infty\limits_{n=1}u_n n=1un不是正项级数时, ∑ n = 1 ∞ v n \displaystyle\sum^\infty\limits_{n=1}v_n n=1vn可能不收敛。例如:若 u n = ( − 1 ) n − 1 n , v n = ( − 1 ) n − 1 n + 1 n u_n=\cfrac{(-1)^{n-1}}{\sqrt{n}},v_n=\cfrac{(-1)^{n-1}}{\sqrt{n}}+\cfrac{1}{n} un=n (1)n1,vn=n (1)n1+n1,则 ∑ n = 1 ∞ u n \displaystyle\sum^\infty\limits_{n=1}u_n n=1un收敛,且 lim ⁡ n → ∞ v n u n = lim ⁡ n → ∞ [ 1 + ( − 1 ) n − 1 n ] = 1 \lim\limits_{n\to\infty}\cfrac{v_n}{u_n}=\lim\limits_{n\to\infty}\left[1+\cfrac{(-1)^{n-1}}{\sqrt{n}}\right]=1 nlimunvn=nlim[1+n (1)n1]=1,然而 ∑ n = 1 ∞ v n \displaystyle\sum^\infty\limits_{n=1}v_n n=1vn发散。(这道题主要利用了反例证明

6.讨论下列级数的绝对收敛性与条件收敛性:

(3) ∑ n = 1 ∞ ( − 1 ) n ln ⁡ n + 1 n ; \displaystyle\sum^\infty\limits_{n=1}(-1)^n\ln\cfrac{n+1}{n}; n=1(1)nlnnn+1;


u n = ( − 1 ) n ln ⁡ n + 1 n , lim ⁡ n → ∞ ∣ u n ∣ 1 n = lim ⁡ n → ∞ n ⋅ ln ⁡ ( 1 + 1 n ) = lim ⁡ n → ∞ ln ⁡ ( 1 + 1 n ) n = 1. u_n=(-1)^n\ln\cfrac{n+1}{n},\\ \lim\limits_{n\to\infty}\cfrac{|u_n|}{\cfrac{1}{n}}=\lim\limits_{n\to\infty}n\cdot\ln\left(1+\cfrac{1}{n}\right)=\lim\limits_{n\to\infty}\ln\left(1+\cfrac{1}{n}\right)^n=1. un=(1)nlnnn+1,nlimn1un=nlimnln(1+n1)=nlimln(1+n1)n=1.
  而级数 ∑ n = 1 ∞ 1 n \displaystyle\sum^\infty\limits_{n=1}\cfrac{1}{n} n=1n1发散,由极限形式的比较审敛法知 ∑ n = 1 ∞ ∣ u n ∣ \displaystyle\sum^\infty\limits_{n=1}|u_n| n=1un发散。
  而 ∑ n = 1 ∞ u n \displaystyle\sum^\infty\limits_{n=1}u_n n=1un是交错级数且满足莱布尼兹定理的条件,因而收敛,故该级数条件收敛。
这道题主要利用了等价无穷小代换求解

7.求下列极限:

(1) lim ⁡ n → ∞ 1 n ∑ k = 1 n 1 3 k ( 1 + 1 k ) k 2 ; \lim\limits_{n\to\infty}\cfrac{1}{n}\displaystyle\sum^n\limits_{k=1}\cfrac{1}{3^k}\left(1+\cfrac{1}{k}\right)^{k^2}; nlimn1k=1n3k1(1+k1)k2;

  由于 s n = ∑ k = 1 n 1 3 k ( 1 + 1 k ) k 2 s_n=\displaystyle\sum^n\limits_{k=1}\cfrac{1}{3^k}\left(1+\cfrac{1}{k}\right)^{k^2} sn=k=1n3k1(1+k1)k2是级数 ∑ n = 1 ∞ 1 3 n ( 1 + 1 n ) n 2 \displaystyle\sum^\infty\limits_{n=1}\cfrac{1}{3^n}\left(1+\cfrac{1}{n}\right)^{n^2} n=13n1(1+n1)n2的部分和,而由正项级数的根植审敛法,当 n → ∞ n\to\infty n时,
1 3 n ( 1 + 1 n ) n 2 n = 1 3 ( 1 + 1 n ) n → e 3 < 1. \sqrt[n]{\cfrac{1}{3^n}\left(1+\cfrac{1}{n}\right)^{n^2}}=\cfrac{1}{3}\left(1+\cfrac{1}{n}\right)^n\to\cfrac{e}{3}<1. n3n1(1+n1)n2 =31(1+n1)n3e<1.
  因此级数 ∑ n = 1 ∞ 1 3 n ( 1 + 1 n ) n 2 \displaystyle\sum^\infty\limits_{n=1}\cfrac{1}{3^n}\left(1+\cfrac{1}{n}\right)^{n^2} n=13n1(1+n1)n2收敛,于是部分和 s n s_n sn有界,从而
lim ⁡ n → ∞ = s n n = 0. \lim\limits_{n\to\infty}=\cfrac{s_n}{n}=0. nlim=nsn=0.
这道题主要利用了级数的收敛性求解

8.求下列幂级数的收敛区间:

(2) ∑ n = 1 ∞ ( 1 + 1 n ) n 2 x n ; \displaystyle\sum^\infty\limits_{n=1}\left(1+\cfrac{1}{n}\right)^{n^2}x^n; n=1(1+n1)n2xn;

   u n = a n x n , a n = ( 1 + 1 n ) n 2 u_n=a_nx^n,a_n=\left(1+\cfrac{1}{n}\right)^{n^2} un=anxn,an=(1+n1)n2。因
lim ⁡ n → ∞ ∣ a n + 1 ∣ ∣ a n ∣ = lim ⁡ n → ∞ ( n + 2 n + 1 ) ( n + 1 ) 2 ( n + 1 n ) n 2 = lim ⁡ n → ∞ ( 1 + 1 n + 1 ) 2 n + 1 ( 1 + 1 n 2 + 2 n ) n 2 = e 2 e = e ( 或 lim ⁡ n → ∞ ∣ a n ∣ n = lim ⁡ n → ∞ ( 1 + 1 n ) n = e ) . \lim\limits_{n\to\infty}\cfrac{|a_{n+1}|}{|a_n|}=\lim\limits_{n\to\infty}\cfrac{\left(\cfrac{n+2}{n+1}\right)^{(n+1)^2}}{\left(\cfrac{n+1}{n}\right)^{n^2}}=\lim\limits_{n\to\infty}\cfrac{\left(1+\cfrac{1}{n+1}\right)^{2n+1}}{\left(1+\cfrac{1}{n^2+2n}\right)^{n^2}}=\cfrac{e^2}{e}=e\\ (\text{或}\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\lim\limits_{n\to\infty}\left(1+\cfrac{1}{n}\right)^n=e). nlimanan+1=nlim(nn+1)n2(n+1n+2)(n+1)2=nlim(1+n2+2n1)n2(1+n+11)2n+1=ee2=e(nlimnan =nlim(1+n1)n=e).
  故收敛半径为 R = 1 e R=\cfrac{1}{e} R=e1,收敛区间为 ( − 1 e , 1 e ) \left(-\cfrac{1}{e},\cfrac{1}{e}\right) (e1,e1)。(这道题主要利用了审敛法求解

9.求下列幂级数的和函数:

(3) ∑ n = 1 ∞ n ( x − 1 ) n ; \displaystyle\sum^\infty\limits_{n=1}n(x-1)^n; n=1n(x1)n;

  令 x − 1 = t x-1=t x1=t,幂级数 ∑ n = 1 ∞ n t n \displaystyle\sum^\infty\limits_{n=1}nt^n n=1ntn的收敛域为 ( − 1 , 1 ) (-1,1) (1,1)。记其和函数为 φ ( t ) \varphi(t) φ(t),即有
φ ( t ) = ∑ n = 1 ∞ n t n = t ∑ n = 1 ∞ n t n − 1 = t ( ∑ n = 1 ∞ t n ) ′ = t ( t 1 − t ) ′ = t ( 1 − t ) 2 , t ∈ ( − 1 , 1 ) . \begin{aligned} \varphi(t)&=\displaystyle\sum^\infty\limits_{n=1}nt^n=t\displaystyle\sum^\infty\limits_{n=1}nt^{n-1}=t\left(\displaystyle\sum^\infty\limits_{n=1}t^n\right)'\\ &=t\left(\cfrac{t}{1-t}\right)'=\cfrac{t}{(1-t)^2},\quad t\in(-1,1). \end{aligned} φ(t)=n=1ntn=tn=1ntn1=t(n=1tn)=t(1tt)=(1t)2t,t(1,1).
  于是原级数的和函数
s ( x ) = φ ( x − 1 ) = x − 1 ( 2 − x ) 2 , x ∈ ( 0 , 2 ) . s(x)=\varphi(x-1)=\cfrac{x-1}{(2-x)^2},\quad x\in(0,2). s(x)=φ(x1)=(2x)2x1,x(0,2).
这道题主要利用了换元的方法求解

(4) ∑ n = 1 ∞ x n n ( n + 1 ) . \displaystyle\sum^\infty\limits_{n=1}\cfrac{x^n}{n(n+1)}. n=1n(n+1)xn.

   u n ( x ) = a n x n , a n = 1 n ( n + 1 ) u_n(x)=a_nx^n,a_n=\cfrac{1}{n(n+1)} un(x)=anxn,an=n(n+1)1。由 lim ⁡ n → ∞ ∣ a n + 1 ∣ ∣ a n ∣ = lim ⁡ n → ∞ n n + 2 = 1 \lim\limits_{n\to\infty}\cfrac{|a_{n+1}|}{|a_n|}=\lim\limits_{n\to\infty}\cfrac{n}{n+2}=1 nlimanan+1=nlimn+2n=1,得幂级数的收敛半径 R = 1 R=1 R=1。当 x = ± 1 x=\pm1 x=±1时,级数 ∑ n = 1 ∞ 1 n ( n + 1 ) \displaystyle\sum^\infty\limits_{n=1}\cfrac{1}{n(n+1)} n=1n(n+1)1 ∑ n = 1 ∞ ( − 1 ) n n ( n + 1 ) \displaystyle\sum^\infty\limits_{n=1}\cfrac{(-1)^n}{n(n+1)} n=1n(n+1)(1)n均收敛,故幂级数的收敛域为 [ − 1 , 1 ] [-1,1] [1,1]
  设和函数为 s ( x ) s(x) s(x),即 s ( x ) = ∑ n = 1 ∞ x n n ( n + 1 ) s(x)=\displaystyle\sum^\infty\limits_{n=1}\cfrac{x^n}{n(n+1)} s(x)=n=1n(n+1)xn
  当 x = 0 x=0 x=0时, s ( 0 ) = 0 s(0)=0 s(0)=0
  当 0 < ∣ x ∣ < 1 0<|x|<1 0<x<1时,
x s ( x ) = ∑ n = 1 ∞ x n + 1 n ( n + 1 ) . xs(x)=\displaystyle\sum^\infty\limits_{n=1}\cfrac{x^{n+1}}{n(n+1)}. xs(x)=n=1n(n+1)xn+1.
  上式两端对 x x x求导,得
[ x s ( x ) ] ′ = ∑ n = 1 ∞ x n n . [xs(x)]'=\displaystyle\sum^\infty\limits_{n=1}\cfrac{x^n}{n}. [xs(x)]=n=1nxn.
  再求导,得
[ x s ( x ) ] ′ ′ = ∑ n = 1 ∞ x n − 1 = 1 1 − x . [xs(x)]''=\displaystyle\sum^\infty\limits_{n=1}x^{n-1}=\cfrac{1}{1-x}. [xs(x)]=n=1xn1=1x1.
  注意到 [ x s ( x ) ] ′ ∣ x = 0 = 0 [xs(x)]'\biggm\vert_{x=0}=0 [xs(x)]x=0=0,上式两端从 0 0 0 x x x积分,得
[ x s ( x ) ] ′ = ∫ 0 x d x 1 − x = − ln ⁡ ( 1 − x ) . [xs(x)]'=\displaystyle\int^x_0\cfrac{\mathrm{d}x}{1-x}=-\ln(1-x). [xs(x)]=0x1xdx=ln(1x).
  再积分,得
x s ( x ) = − ∫ 0 x ln ⁡ ( 1 − x ) d x = ( 1 − x ) ln ⁡ ( 1 − x ) + x . xs(x)=-\displaystyle\int^x_0\ln(1-x)\mathrm{d}x=(1-x)\ln(1-x)+x. xs(x)=0xln(1x)dx=(1x)ln(1x)+x.
  于是
s ( x ) = 1 − x x ln ⁡ ( 1 − x ) + 1 , x ∈ ( − 1 , 0 ) ∪ ( 0 , 1 ) . s(x)=\cfrac{1-x}{x}\ln(1-x)+1,\quad x\in(-1,0)\cup(0,1). s(x)=x1xln(1x)+1,x(1,0)(0,1).
  由于幂级数在 x = ± 1 x=\pm1 x=±1处收敛,故和函数分别在 x = ± 1 x=\pm1 x=±1处左连续与右连续,于是 s ( 1 ) = lim ⁡ s → 1 − s ( x ) = lim ⁡ s → 1 − 1 − x x ln ⁡ ( 1 − x ) + 1 = 1 s(1)=\lim\limits_{s\to1^-}s(x)=\lim\limits_{s\to1^-}\cfrac{1-x}{x}\ln(1-x)+1=1 s(1)=s1lims(x)=s1limx1xln(1x)+1=1
  因此
s ( x ) = { 1 + ( 1 x − 1 ) ln ⁡ ( 1 − x ) , x ∈ [ − 1 , 0 ) ∪ ( 0 , 1 ) , 0 , x = 0 , 1 x = 1. s(x)=\begin{cases} 1+\left(\cfrac{1}{x}-1\right)\ln(1-x),&x\in[-1,0)\cup(0,1),\\ 0,&x=0,\\ 1&x=1. \end{cases} s(x)=1+(x11)ln(1x),0,1x[1,0)(0,1),x=0,x=1.
这道题主要利用了逐项积分和逐项求导求解

10.求下列数项级数的和:

(1) ∑ n = 1 ∞ n 2 n ! ; \displaystyle\sum^\infty\limits_{n=1}\cfrac{n^2}{n!}; n=1n!n2;

  利用 ∑ n = 1 ∞ n 2 n ! = e x , x ∈ ( − ∞ , + ∞ ) \displaystyle\sum^\infty\limits_{n=1}\cfrac{n^2}{n!}=e^x,x\in(-\infty,+\infty) n=1n!n2=ex,x(,+),取 x = 1 x=1 x=1,有 ∑ n = 1 ∞ 1 n ! = e \displaystyle\sum^\infty\limits_{n=1}\cfrac{1}{n!}=e n=1n!1=e
  又
∑ n = 1 ∞ n 2 n ! = ∑ n = 1 ∞ n ( n − 1 ) ! = ∑ n = 0 ∞ n + 1 n ! = ∑ n = 0 ∞ n n ! + ∑ n = 0 ∞ n 2 n ! . \displaystyle\sum^\infty\limits_{n=1}\cfrac{n^2}{n!}=\displaystyle\sum^\infty\limits_{n=1}\cfrac{n}{(n-1)!}=\sum^\infty\limits_{n=0}\cfrac{n+1}{n!}=\displaystyle\sum^\infty\limits_{n=0}\cfrac{n}{n!}+\displaystyle\sum^\infty\limits_{n=0}\cfrac{n^2}{n!}. n=1n!n2=n=1(n1)!n=n=0n!n+1=n=0n!n+n=0n!n2.
  其中
∑ n = 0 ∞ n n ! = ∑ n = 1 ∞ n n ! = ∑ n = 1 ∞ 1 ( n − 1 ) ! = ∑ n = 0 ∞ 1 n ! . \displaystyle\sum^\infty\limits_{n=0}\cfrac{n}{n!}=\displaystyle\sum^\infty\limits_{n=1}\cfrac{n}{n!}=\displaystyle\sum^\infty\limits_{n=1}\cfrac{1}{(n-1)!}=\displaystyle\sum^\infty\limits_{n=0}\cfrac{1}{n!}. n=0

你可能感兴趣的:(考研数学一高等数学刷题错题记录,#,其他)