本章先讨论常数项级数,介绍无穷级数的一些基本内容,然后讨论函数项级数,着重讨论如何将函数展开成幂级数和三角级数的问题。——高等数学同济版
本节主要介绍了常数项级数的概念和性质。
解 此级数的一般项 u n = 1 3 n u_n=\cfrac{1}{\sqrt[n]{3}} un=n31,有 lim n → ∞ u n = lim n → ∞ ( 1 3 ) 1 n = 1 \lim\limits_{n\to\infty}u_n=\lim\limits_{n\to\infty}\left(\cfrac{1}{3}\right)^{\frac{1}{n}}=1 n→∞limun=n→∞lim(31)n1=1,不满足级数收敛的必要条件,故该级数发散。(这道题主要利用了收敛级数的必要条件求解)
解
∣ s n + p − s n ∣ = ∣ u n + 1 + u n + 2 + u n + 3 + ⋯ + u n + p ∣ = ∣ ( − 1 ) n + 2 n + 1 + ( − 1 ) n + 3 n + 2 + ( − 1 ) n + 4 n + 3 + ⋯ + ( − 1 ) n + p + 1 n + p ∣ = ∣ 1 n + 1 − 1 n + 2 + 1 n + 3 − ⋯ + ( − 1 ) p − 1 n + p ∣ . \begin{aligned} |s_{n+p}-s_n|&=|u_{n+1}+u_{n+2}+u_{n+3}+\cdots+u_{n+p}|\\ &=\left|\cfrac{(-1)^{n+2}}{n+1}+\cfrac{(-1)^{n+3}}{n+2}+\cfrac{(-1)^{n+4}}{n+3}+\cdots+\cfrac{(-1)^{n+p+1}}{n+p}\right|\\ &=\left|\cfrac{1}{n+1}-\cfrac{1}{n+2}+\cfrac{1}{n+3}-\cdots+\cfrac{(-1)^{p-1}}{n+p}\right|. \end{aligned} ∣sn+p−sn∣=∣un+1+un+2+un+3+⋯+un+p∣=∣∣∣∣∣n+1(−1)n+2+n+2(−1)n+3+n+3(−1)n+4+⋯+n+p(−1)n+p+1∣∣∣∣∣=∣∣∣∣∣n+11−n+21+n+31−⋯+n+p(−1)p−1∣∣∣∣∣.
由于
1 n + 1 − 1 n + 2 + 1 n + 3 − ⋯ + ( − 1 ) p − 1 n + p = ( 1 n + 1 − 1 n + 2 ) + ( 1 n + 3 − 1 n + 4 ) + ⋯ + { 1 n + p , p 为奇数, 1 n + p − 1 − 1 n + p , p 为偶数. \begin{aligned} &\cfrac{1}{n+1}-\cfrac{1}{n+2}+\cfrac{1}{n+3}-\cdots+\cfrac{(-1)^{p-1}}{n+p}\\ =&\left(\cfrac{1}{n+1}-\cfrac{1}{n+2}\right)+\left(\cfrac{1}{n+3}-\cfrac{1}{n+4}\right)+\cdots+\begin{cases}\cfrac{1}{n+p},&p\text{为奇数,}\\\cfrac{1}{n+p-1}-\cfrac{1}{n+p},&p\text{为偶数.}\end{cases} \end{aligned} =n+11−n+21+n+31−⋯+n+p(−1)p−1(n+11−n+21)+(n+31−n+41)+⋯+⎩⎪⎪⎨⎪⎪⎧n+p1,n+p−11−n+p1,p为奇数,p为偶数.
故
1 n + 1 − 1 n + 2 + 1 n + 3 − ⋯ + ( − 1 ) p − 1 n + p > 0 , ∀ p ∈ Z + . \cfrac{1}{n+1}-\cfrac{1}{n+2}+\cfrac{1}{n+3}-\cdots+\cfrac{(-1)^{p-1}}{n+p}>0,\forall p\in\bold{Z}^+. n+11−n+21+n+31−⋯+n+p(−1)p−1>0,∀p∈Z+.
于是,当 p p p为奇数时,
∣ s n + p − s n ∣ = 1 n + 1 − ( 1 n + 2 − 1 n + 3 ) − ⋯ ( 1 n + p − 1 − 1 n + p ) < 1 n + 1 . |s_{n+p}-s_n|=\cfrac{1}{n+1}-\left(\cfrac{1}{n+2}-\cfrac{1}{n+3}\right)-\cdots\left(\cfrac{1}{n+p-1}-\cfrac{1}{n+p}\right)<\cfrac{1}{n+1}. ∣sn+p−sn∣=n+11−(n+21−n+31)−⋯(n+p−11−n+p1)<n+11.
当 p p p为偶数时,
∣ s n + p − s n ∣ = 1 n + 1 − ( 1 n + 2 − 1 n + 3 ) − ⋯ ( 1 n + p − 2 − 1 n + p − 1 ) − 1 n + p < 1 n + 1 . |s_{n+p}-s_n|=\cfrac{1}{n+1}-\left(\cfrac{1}{n+2}-\cfrac{1}{n+3}\right)-\cdots\left(\cfrac{1}{n+p-2}-\cfrac{1}{n+p-1}\right)-\cfrac{1}{n+p}<\cfrac{1}{n+1}. ∣sn+p−sn∣=n+11−(n+21−n+31)−⋯(n+p−21−n+p−11)−n+p1<n+11.
因此,对任意给定的正数 ε \varepsilon ε,取正整数 N ⩾ 1 ε \bm{N}\geqslant\cfrac{1}{\varepsilon} N⩾ε1,则当 n > N n>\bm{N} n>N时,对任何正整数 p p p,都有
∣ s n + p − s n ∣ < 1 n + 1 < 1 n < ε . |s_{n+p}-s_n|<\cfrac{1}{n+1}<\cfrac{1}{n}<\varepsilon. ∣sn+p−sn∣<n+11<n1<ε.
根据柯西收敛原理知,级数收敛。(这道题主要利用了奇偶两种情况讨论求解)
解 当 n n n是 3 3 3的倍数时,如果取 p = 3 n p=3n p=3n,则必有
∣ s n + p − s n ∣ = ∣ 1 n + 1 + ( 1 n + 2 − 1 n + 3 ) + 1 n + 4 + ( 1 n + 5 − 1 n + 6 ) + ⋯ + 1 4 n − 2 + ( 1 4 n − 1 − 1 4 n ) ∣ > 1 n + 1 + 1 n + 4 + ⋯ + 1 4 n − 2 > 1 4 n + 1 4 n + ⋯ + 1 4 n ⏟ n 个 = 1 4 . \begin{aligned} |s_{n+p}-s_n|&=\left|\cfrac{1}{n+1}+\left(\cfrac{1}{n+2}-\cfrac{1}{n+3}\right)+\cfrac{1}{n+4}+\left(\cfrac{1}{n+5}-\cfrac{1}{n+6}\right)+\cdots+\cfrac{1}{4n-2}+\left(\cfrac{1}{4n-1}-\cfrac{1}{4n}\right)\right|\\ &>\cfrac{1}{n+1}+\cfrac{1}{n+4}+\cdots+\cfrac{1}{4n-2}>\underbrace{\cfrac{1}{4n}+\cfrac{1}{4n}+\cdots+\cfrac{1}{4n}}_{n\text{个}}=\cfrac{1}{4}. \end{aligned} ∣sn+p−sn∣=∣∣∣∣∣n+11+(n+21−n+31)+n+41+(n+51−n+61)+⋯+4n−21+(4n−11−4n1)∣∣∣∣∣>n+11+n+41+⋯+4n−21>n个 4n1+4n1+⋯+4n1=41.
于是对 ε 0 = 1 4 \varepsilon_0=\cfrac{1}{4} ε0=41,不论 N \bm{N} N为何正整数,当 n > N n>\bm{N} n>N并 n n n是 3 3 3的倍数,且当 p = 3 n p=3n p=3n时,就有
∣ s n + p − s n ∣ > ε 0 . |s_{n+p}-s_n|>\varepsilon_0. ∣sn+p−sn∣>ε0.
根据柯西收敛原理知,级数发散。(这道题利用了收敛级数的定义求解)
本节主要介绍了常数项级数的审敛法的求解。
解 因 lim n → ∞ u n + 1 u n = lim n → ∞ 2 n + 1 ⋅ ( n + 1 ) ! ( n + 1 ) n + 1 / 2 n ⋅ n ! n n = lim n → ∞ 2 ( n n + 1 ) n = 2 e < 1 \lim\limits_{n\to\infty}\cfrac{u_{n+1}}{u_n}=\lim\limits_{n\to\infty}\cfrac{2^{n+1}\cdot (n+1)!}{(n+1)^{n+1}}\biggm/\cfrac{2^n\cdot n!}{n^n}=\lim\limits_{n\to\infty}2\left(\cfrac{n}{n+1}\right)^n=\cfrac{2}{e}<1 n→∞limunun+1=n→∞lim(n+1)n+12n+1⋅(n+1)!/nn2n⋅n!=n→∞lim2(n+1n)n=e2<1,故级数收敛。(这道题利用了比值审敛法求解)
本节主要介绍了幂级数的相关计算。
解 不难求出此级数的收敛半径为 1 1 1。当 − 1 < x < 1 -1
( ∑ n = 1 ∞ x 4 n + 1 4 n + 1 ) ′ = ∑ n = 1 ∞ ( x 4 n + 1 4 n + 1 ) ′ = ∑ n = 1 ∞ x 4 n = x 4 1 − x 4 . \left(\displaystyle\sum^{\infty}\limits_{n=1}\cfrac{x^{4n+1}}{4n+1}\right)'=\displaystyle\sum^{\infty}\limits_{n=1}\left(\cfrac{x^{4n+1}}{4n+1}\right)'=\displaystyle\sum^{\infty}\limits_{n=1}x^{4n}=\cfrac{x^4}{1-x^4}. (n=1∑∞4n+1x4n+1)′=n=1∑∞(4n+1x4n+1)′=n=1∑∞x4n=1−x4x4.
在上式两端分别从 0 0 0至 x x x积分,并由于 ∑ n = 1 ∞ x 4 n + 1 4 n + 1 \displaystyle\sum^{\infty}\limits_{n=1}\cfrac{x^{4n+1}}{4n+1} n=1∑∞4n+1x4n+1在 x = 0 x=0 x=0处收敛于 0 0 0,故得
∑ n = 1 ∞ x 4 n + 1 4 n + 1 = ∫ 0 x x 4 1 − x 4 d x = ∫ 0 x ( − 1 + 1 2 ⋅ 1 1 + x 2 + 1 2 ⋅ 1 1 − x 2 ) d x = 1 4 ln 1 + x 1 − x + 1 2 arctan x − x . \begin{aligned} \displaystyle\sum^{\infty}\limits_{n=1}\cfrac{x^{4n+1}}{4n+1}&=\displaystyle\int^x_0\cfrac{x^4}{1-x^4}\mathrm{d}x\\ &=\displaystyle\int^x_0\left(-1+\cfrac{1}{2}\cdot\cfrac{1}{1+x^2}+\cfrac{1}{2}\cdot\cfrac{1}{1-x^2}\right)\mathrm{d}x\\ &=\cfrac{1}{4}\ln\cfrac{1+x}{1-x}+\cfrac{1}{2}\arctan x-x. \end{aligned} n=1∑∞4n+1x4n+1=∫0x1−x4x4dx=∫0x(−1+21⋅1+x21+21⋅1−x21)dx=41ln1−x1+x+21arctanx−x.
又原级数在 x = ± 1 x=\pm1 x=±1处发散,故它的和函数
s ( x ) = 1 4 ln 1 + x 1 − x + 1 2 arctan x − x ( − 1 < x < 1 ) . s(x)=\cfrac{1}{4}\ln\cfrac{1+x}{1-x}+\cfrac{1}{2}\arctan x-x\quad(-1
(这道题主要利用了逐项求导求解)
本节主要介绍了函数在某区间的幂级数展开。(部分函数展开式见附录一,传送门在这里)
解 ln ( a + x ) = ln a + ln ( 1 + x a ) \ln(a+x)=\ln a+\ln(1+\cfrac{x}{a}) ln(a+x)=lna+ln(1+ax),利用
ln ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n − 1 n x n , x ∈ ( − 1 , + 1 ] . \ln(1+x)=\sum^{\infty}\limits_{n=0}\cfrac{(-1)^{n-1}}{n}x^n,\quad x\in(-1,+1]. ln(1+x)=n=0∑∞n(−1)n−1xn,x∈(−1,+1].
得
ln ( a + x ) = ∑ n = 0 ∞ ( − 1 ) n − 1 n ( x a ) n , x ∈ ( − a , + a ] . \ln(a+x)=\sum^{\infty}\limits_{n=0}\cfrac{(-1)^{n-1}}{n}\left(\cfrac{x}{a}\right)^n,\quad x\in(-a,+a]. ln(a+x)=n=0∑∞n(−1)n−1(ax)n,x∈(−a,+a].
(这道题主要利用了常用幂级数展开求解)
解一 利用 1 + x = 1 + 1 2 x − 1 2 ⋅ 4 x 2 + 1 ⋅ 3 2 ⋅ 4 ⋅ 6 x 3 − ⋯ , x ∈ [ − 1 , 1 ] \sqrt{1+x}=1+\cfrac{1}{2}x-\cfrac{1}{2\cdot4}x^2+\cfrac{1\cdot3}{2\cdot4\cdot6}x^3-\cdots,x\in[-1,1] 1+x=1+21x−2⋅41x2+2⋅4⋅61⋅3x3−⋯,x∈[−1,1],并因为 ∫ 0 x x 1 + x 2 d x = 1 + x 2 − 1 \displaystyle\int^x_0\cfrac{x}{\sqrt{1+x^2}}\mathrm{d}x=\sqrt{1+x^2}-1 ∫0x1+x2xdx=1+x2−1,以 x 2 x^2 x2替换上面幂级数中的 x x x,得
∫ 0 x x 1 + x 2 d x = 1 + x 2 − 1 = 1 2 x 2 − 1 2 ⋅ 4 x 4 + 1 ⋅ 3 2 ⋅ 4 ⋅ 6 x 6 − ⋯ + ( − 1 ) n − 1 ⋅ 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 3 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n − 2 ) x 2 n − 1 + ⋯ . \begin{aligned} \displaystyle\int^x_0\cfrac{x}{\sqrt{1+x^2}}\mathrm{d}x&=\sqrt{1+x^2}-1\\ &=\cfrac{1}{2}x^2-\cfrac{1}{2\cdot4}x^4+\cfrac{1\cdot3}{2\cdot4\cdot6}x^6-\cdots+(-1)^{n-1}\cdot\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-3)}{2\cdot4\cdot6\cdot\cdots\cdot(2n-2)}x^{2n-1}+\cdots. \end{aligned} ∫0x1+x2xdx=1+x2−1=21x2−2⋅41x4+2⋅4⋅61⋅3x6−⋯+(−1)n−1⋅2⋅4⋅6⋅⋯⋅(2n−2)1⋅3⋅5⋅⋯⋅(2n−3)x2n−1+⋯.
在 ( − 1 , 1 ) (-1,1) (−1,1)内将上式两端对 x x x求导,得
x 1 + x 2 = x − 1 2 x 3 − 1 ⋅ 3 2 ⋅ 4 x 5 + 1 ⋅ 3 2 ⋅ 4 ⋅ 6 x 6 − ⋯ + ( − 1 ) n − 1 ⋅ 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 3 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n − 2 ) x 2 n − 1 + ⋯ = x + ∑ n = 2 ∞ ( − 1 ) n − 1 ⋅ 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 3 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n − 2 ) x 2 n − 1 = x + ∑ n = 1 ∞ ( − 1 ) n ⋅ 2 ( 2 n ) ! ( n ! ) 2 ( x 2 ) 2 n + 1 , x ∈ ( − 1 , 1 ) . \begin{aligned} \cfrac{x}{\sqrt{1+x^2}}&=x-\cfrac{1}{2}x^3-\cfrac{1\cdot3}{2\cdot4}x^5+\cfrac{1\cdot3}{2\cdot4\cdot6}x^6-\cdots+(-1)^{n-1}\cdot\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-3)}{2\cdot4\cdot6\cdot\cdots\cdot(2n-2)}x^{2n-1}+\cdots\\ &=x+\displaystyle\sum^{\infty}\limits_{n=2}(-1)^{n-1}\cdot\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-3)}{2\cdot4\cdot6\cdot\cdots\cdot(2n-2)}x^{2n-1}\\ &=x+\displaystyle\sum^{\infty}\limits_{n=1}(-1)^n\cdot\cfrac{2(2n)!}{(n!)^2}\left(\cfrac{x}{2}\right)^{2n+1},\quad x\in(-1,1). \end{aligned} 1+x2x=x−21x3−2⋅41⋅3x5+2⋅4⋅61⋅3x6−⋯+(−1)n−1⋅2⋅4⋅6⋅⋯⋅(2n−2)1⋅3⋅5⋅⋯⋅(2n−3)x2n−1+⋯=x+n=2∑∞(−1)n−1⋅2⋅4⋅6⋅⋯⋅(2n−2)1⋅3⋅5⋅⋯⋅(2n−3)x2n−1=x+n=1∑∞(−1)n⋅(n!)22(2n)!(2x)2n+1,x∈(−1,1).
在 x = ± 1 x=\pm1 x=±1处上式右端的级数均收敛且函数 x 1 + x 2 \cfrac{x}{\sqrt{1+x^2}} 1+x2x连续,故
x 1 + x 2 = x + ∑ n = 1 ∞ ( − 1 ) n ⋅ 2 ( 2 n ) ! ( n ! ) 2 ( x 2 ) 2 n + 1 , x ∈ [ − 1 , 1 ] . \cfrac{x}{\sqrt{1+x^2}}=x+\sum^{\infty}\limits_{n=1}(-1)^n\cdot\cfrac{2(2n)!}{(n!)^2}\left(\cfrac{x}{2}\right)^{2n+1},\quad x\in[-1,1]. 1+x2x=x+n=1∑∞(−1)n⋅(n!)22(2n)!(2x)2n+1,x∈[−1,1].
(这道题主要利用了代换的方法求解)
解二 将 x 2 x^2 x2替换展开式
1 1 + x = 1 + ∑ n = 1 ∞ ( − 1 ) n 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 1 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n ) x n , x ∈ [ − 1 , 1 ] . \cfrac{1}{\sqrt{1+x}}=1+\displaystyle\sum^{\infty}\limits_{n=1}(-1)^n\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2\cdot4\cdot6\cdot\cdots\cdot(2n)}x^n,\quad x\in[-1,1]. 1+x1=1+n=1∑∞(−1)n2⋅4⋅6⋅⋯⋅(2n)1⋅3⋅5⋅⋯⋅(2n−1)xn,x∈[−1,1].
中的 x x x,得
1 1 + x 2 = 1 + ∑ n = 1 ∞ ( − 1 ) n 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 1 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n ) x 2 n , x ∈ [ − 1 , 1 ] . \cfrac{1}{\sqrt{1+x^2}}=1+\displaystyle\sum^{\infty}\limits_{n=1}(-1)^n\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2\cdot4\cdot6\cdot\cdots\cdot(2n)}x^{2n},\quad x\in[-1,1]. 1+x21=1+n=1∑∞(−1)n2⋅4⋅6⋅⋯⋅(2n)1⋅3⋅5⋅⋯⋅(2n−1)x2n,x∈[−1,1].
从而得
1 1 + x 2 = x + ∑ n = 1 ∞ ( − 1 ) n 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 1 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n ) x 2 n + 1 = x + ∑ n = 1 ∞ ( − 1 ) n ⋅ 2 ( 2 n ) ! ( n ! ) 2 ( x 2 ) 2 n + 1 , x ∈ [ − 1 , 1 ] . \begin{aligned} \cfrac{1}{\sqrt{1+x^2}}&=x+\displaystyle\sum^{\infty}\limits_{n=1}(-1)^n\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2\cdot4\cdot6\cdot\cdots\cdot(2n)}x^{2n+1}\\ &=x+\displaystyle\sum^{\infty}\limits_{n=1}(-1)^n\cdot\cfrac{2(2n)!}{(n!)^2}\left(\cfrac{x}{2}\right)^{2n+1},\quad x\in[-1,1]. \end{aligned} 1+x21=x+n=1∑∞(−1)n2⋅4⋅6⋅⋯⋅(2n)1⋅3⋅5⋅⋯⋅(2n−1)x2n+1=x+n=1∑∞(−1)n⋅(n!)22(2n)!(2x)2n+1,x∈[−1,1].
(这道题主要利用了代换的方法求解)
解 当 m > 0 m>0 m>0时,因
( 1 + x ) m = 1 + m a + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + ⋯ , x ∈ [ − 1 , 1 ] . (1+x)^m=1+ma+\cfrac{m(m-1)}{2!}x^2+\cdots+\cfrac{m(m-1)\cdots(m-n+1)}{n!}x^n+\cdots,\quad x\in[-1,1]. (1+x)m=1+ma+2!m(m−1)x2+⋯+n!m(m−1)⋯(m−n+1)xn+⋯,x∈[−1,1].
而
x 3 = [ 1 + ( x − 1 ) ] 3 2 . \sqrt{x^3}=[1+(x-1)]^{\frac{3}{2}}. x3=[1+(x−1)]23.
在以上二项展开式中取 m = 3 2 m=\cfrac{3}{2} m=23,并用 x − 1 x-1 x−1替换其中的 x x x,得
x 3 = 1 + 3 2 ( x − 1 ) + 1 2 ! ⋅ 3 2 ( 3 2 − 1 ) ( x − 1 ) 2 + ⋯ + 1 n ! 3 2 ( 3 2 − 1 ) ⋅ ⋯ ⋅ ( 3 2 − n + 1 ) ( x − 1 ) n + ⋯ = 1 + 3 2 ( x − 1 ) + ∑ n = 0 ∞ 3 ⋅ ( − 1 ) n 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 1 ) 2 n + 2 ( n + 2 ) ! ( x − 1 ) n + 2 = 1 + 3 2 ( x − 1 ) + ∑ n = 1 ∞ ( − 1 ) n 2 ( 2 n ) ! ( n ! ) 2 ⋅ 3 ( n + 1 ) ( n + 2 ) 2 n ( x − 1 2 ) n + 2 , x ∈ [ 0 , 2 ] . \begin{aligned} \sqrt{x^3}&=1+\cfrac{3}{2}(x-1)+\cfrac{1}{2!}\cdot\cfrac{3}{2}\left(\cfrac{3}{2}-1\right)(x-1)^2+\cdots+\cfrac{1}{n!}\cfrac{3}{2}\left(\cfrac{3}{2}-1\right)\cdot\cdots\cdot\left(\cfrac{3}{2}-n+1\right)(x-1)^n+\cdots\\ &=1+\cfrac{3}{2}(x-1)+\sum^{\infty}\limits_{n=0}\cfrac{3\cdot(-1)^n1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2^{n+2}(n+2)!}(x-1)^{n+2}\\ &=1+\cfrac{3}{2}(x-1)+\sum^{\infty}\limits_{n=1}(-1)^n\cfrac{2(2n)!}{(n!)^2}\cdot\cfrac{3}{(n+1)(n+2)2^n}\left(\cfrac{x-1}{2}\right)^{n+2},\quad x\in[0,2]. \end{aligned} x3=1+23(x−1)+2!1⋅23(23−1)(x−1)2+⋯+n!123(23−1)⋅⋯⋅(23−n+1)(x−1)n+⋯=1+23(x−1)+n=0∑∞2n+2(n+2)!3⋅(−1)n1⋅3⋅5⋅⋯⋅(2n−1)(x−1)n+2=1+23(x−1)+n=1∑∞(−1)n(n!)22(2n)!⋅(n+1)(n+2)2n3(2x−1)n+2,x∈[0,2].
(这道题主要利用了幂级数的直接展开求解)
本节主要介绍了函数的幂级数展开式的应用。(本节考研考纲未明确提出考察)
本节主要介绍了级数的一致收敛性。(本节考研考纲未明确提出考察)
从本节开始,我们讨论由三角函数组成的函数项级数,即所谓
三角级数
,着重研究如何把函数展开成三角级数。——高等数学同济版
本节主要傅里叶级数的概念和基本级计算。
解
a 0 = 1 π [ ∫ − π 0 f ( x ) d x + ∫ 0 π f ( x ) d x ] = 1 π [ ∫ − π 0 f ( x ) d x + ∫ 0 π [ − f ( x − π ) ] d x ] . \begin{aligned} a_0&=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\mathrm{d}x+\displaystyle\int^\pi_0f(x)\mathrm{d}x\right]\\ &=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\mathrm{d}x+\displaystyle\int^\pi_0[-f(x-\pi)]\mathrm{d}x\right]. \end{aligned} a0=π1[∫−π0f(x)dx+∫0πf(x)dx]=π1[∫−π0f(x)dx+∫0π[−f(x−π)]dx].
在上式的第二个积分中令 x − π = u x-\pi=u x−π=u,则
a 0 = 1 π [ ∫ − π 0 f ( x ) d x − ∫ − π 0 f ( u ) d u ] = 0. a_0=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\mathrm{d}x-\displaystyle\int^0_{-\pi}f(u)\mathrm{d}u\right]=0. a0=π1[∫−π0f(x)dx−∫−π0f(u)du]=0.
同理可得
a n = 1 π [ ∫ − π 0 f ( x ) cos n x d x + ∫ 0 π f ( x ) cos n x d x ] = 1 π [ ∫ − π 0 f ( x ) cos n x d x + ∫ 0 π [ − f ( x − π ) ] cos n x d x ] = 1 π [ ∫ − π 0 f ( x ) cos n x d x − ∫ − π 0 f ( u ) cos ( n π + n u ) d u ] . \begin{aligned} a_n&=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\cos nx\mathrm{d}x+\displaystyle\int^\pi_0f(x)\cos nx\mathrm{d}x\right]\\ &=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\cos nx\mathrm{d}x+\displaystyle\int^\pi_0[-f(x-\pi)]\cos nx\mathrm{d}x\right]\\ &=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\cos nx\mathrm{d}x-\displaystyle\int^0_{-\pi}f(u)\cos(n\pi+nu)\mathrm{d}u\right]. \end{aligned} an=π1[∫−π0f(x)cosnxdx+∫0πf(x)cosnxdx]=π1[∫−π0f(x)cosnxdx+∫0π[−f(x−π)]cosnxdx]=π1[∫−π0f(x)cosnxdx−∫−π0f(u)cos(nπ+nu)du].
及
b n = 1 π [ ∫ − π 0 f ( x ) sin n x d x − ∫ − π 0 f ( u ) sin ( n π + n u ) d u ] . b_n=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\sin nx\mathrm{d}x-\displaystyle\int^0_{-\pi}f(u)\sin(n\pi+nu)\mathrm{d}u\right]. bn=π1[∫−π0f(x)sinnxdx−∫−π0f(u)sin(nπ+nu)du].
当 n = 2 k ( k ∈ N ∗ ) n=2k(k\in\bold{N}^*) n=2k(k∈N∗)时, cos ( n π + n u ) = cos n u , sin ( n π + n u ) = sin n u \cos(n\pi+nu)=\cos nu,\sin(n\pi+nu)=\sin nu cos(nπ+nu)=cosnu,sin(nπ+nu)=sinnu,于是有
a 2 k = 1 π [ ∫ − π 0 f ( x ) cos 2 k x d x − ∫ − π 0 f ( u ) cos 2 k u d u ] = 0. a_{2k}=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\cos 2kx\mathrm{d}x-\displaystyle\int^0_{-\pi}f(u)\cos2ku\mathrm{d}u\right]=0. a2k=π1[∫−π0f(x)cos2kxdx−∫−π0f(u)cos2kudu]=0.
及
b 2 k = 0. ( k ∈ N ∗ ) . b_{2k}=0.\quad(k\in\bold{N}^*). b2k=0.(k∈N∗).
(这道题主要利用了傅里叶级数证明)
本节主要介绍了一般周期函数的傅里叶级数的计算方法。
解 级数 ∑ n = 1 ∞ v n \displaystyle\sum^\infty\limits_{n=1}v_n n=1∑∞vn不一定收敛。
当 ∑ n = 1 ∞ u n \displaystyle\sum^\infty\limits_{n=1}u_n n=1∑∞un是正项级数时,在题设条件下 ∑ n = 1 ∞ v n \displaystyle\sum^\infty\limits_{n=1}v_n n=1∑∞vn必定收敛。因为 lim n → ∞ v n u n = 1 \lim\limits_{n\to\infty}\cfrac{v_n}{u_n}=1 n→∞limunvn=1。根据收敛数列的保号性知,存在正整数 N N N,当 n ⩾ N n\geqslant N n⩾N时有 v n u n > 0 \cfrac{v_n}{u_n}>0 unvn>0,即有 v n > 0 v_n>0 vn>0。于是,按正项级数的比较审敛法知 ∑ n = N ∞ v n \displaystyle\sum^\infty\limits_{n=N}v_n n=N∑∞vn收敛,即 ∑ n = 1 ∞ v n \displaystyle\sum^\infty\limits_{n=1}v_n n=1∑∞vn收敛。
当 ∑ n = 1 ∞ u n \sum^\infty\limits_{n=1}u_n n=1∑∞un不是正项级数时, ∑ n = 1 ∞ v n \displaystyle\sum^\infty\limits_{n=1}v_n n=1∑∞vn可能不收敛。例如:若 u n = ( − 1 ) n − 1 n , v n = ( − 1 ) n − 1 n + 1 n u_n=\cfrac{(-1)^{n-1}}{\sqrt{n}},v_n=\cfrac{(-1)^{n-1}}{\sqrt{n}}+\cfrac{1}{n} un=n(−1)n−1,vn=n(−1)n−1+n1,则 ∑ n = 1 ∞ u n \displaystyle\sum^\infty\limits_{n=1}u_n n=1∑∞un收敛,且 lim n → ∞ v n u n = lim n → ∞ [ 1 + ( − 1 ) n − 1 n ] = 1 \lim\limits_{n\to\infty}\cfrac{v_n}{u_n}=\lim\limits_{n\to\infty}\left[1+\cfrac{(-1)^{n-1}}{\sqrt{n}}\right]=1 n→∞limunvn=n→∞lim[1+n(−1)n−1]=1,然而 ∑ n = 1 ∞ v n \displaystyle\sum^\infty\limits_{n=1}v_n n=1∑∞vn发散。(这道题主要利用了反例证明)
解
u n = ( − 1 ) n ln n + 1 n , lim n → ∞ ∣ u n ∣ 1 n = lim n → ∞ n ⋅ ln ( 1 + 1 n ) = lim n → ∞ ln ( 1 + 1 n ) n = 1. u_n=(-1)^n\ln\cfrac{n+1}{n},\\ \lim\limits_{n\to\infty}\cfrac{|u_n|}{\cfrac{1}{n}}=\lim\limits_{n\to\infty}n\cdot\ln\left(1+\cfrac{1}{n}\right)=\lim\limits_{n\to\infty}\ln\left(1+\cfrac{1}{n}\right)^n=1. un=(−1)nlnnn+1,n→∞limn1∣un∣=n→∞limn⋅ln(1+n1)=n→∞limln(1+n1)n=1.
而级数 ∑ n = 1 ∞ 1 n \displaystyle\sum^\infty\limits_{n=1}\cfrac{1}{n} n=1∑∞n1发散,由极限形式的比较审敛法知 ∑ n = 1 ∞ ∣ u n ∣ \displaystyle\sum^\infty\limits_{n=1}|u_n| n=1∑∞∣un∣发散。
而 ∑ n = 1 ∞ u n \displaystyle\sum^\infty\limits_{n=1}u_n n=1∑∞un是交错级数且满足莱布尼兹定理的条件,因而收敛,故该级数条件收敛。
(这道题主要利用了等价无穷小代换求解)
解 由于 s n = ∑ k = 1 n 1 3 k ( 1 + 1 k ) k 2 s_n=\displaystyle\sum^n\limits_{k=1}\cfrac{1}{3^k}\left(1+\cfrac{1}{k}\right)^{k^2} sn=k=1∑n3k1(1+k1)k2是级数 ∑ n = 1 ∞ 1 3 n ( 1 + 1 n ) n 2 \displaystyle\sum^\infty\limits_{n=1}\cfrac{1}{3^n}\left(1+\cfrac{1}{n}\right)^{n^2} n=1∑∞3n1(1+n1)n2的部分和,而由正项级数的根植审敛法,当 n → ∞ n\to\infty n→∞时,
1 3 n ( 1 + 1 n ) n 2 n = 1 3 ( 1 + 1 n ) n → e 3 < 1. \sqrt[n]{\cfrac{1}{3^n}\left(1+\cfrac{1}{n}\right)^{n^2}}=\cfrac{1}{3}\left(1+\cfrac{1}{n}\right)^n\to\cfrac{e}{3}<1. n3n1(1+n1)n2=31(1+n1)n→3e<1.
因此级数 ∑ n = 1 ∞ 1 3 n ( 1 + 1 n ) n 2 \displaystyle\sum^\infty\limits_{n=1}\cfrac{1}{3^n}\left(1+\cfrac{1}{n}\right)^{n^2} n=1∑∞3n1(1+n1)n2收敛,于是部分和 s n s_n sn有界,从而
lim n → ∞ = s n n = 0. \lim\limits_{n\to\infty}=\cfrac{s_n}{n}=0. n→∞lim=nsn=0.
(这道题主要利用了级数的收敛性求解)
解 u n = a n x n , a n = ( 1 + 1 n ) n 2 u_n=a_nx^n,a_n=\left(1+\cfrac{1}{n}\right)^{n^2} un=anxn,an=(1+n1)n2。因
lim n → ∞ ∣ a n + 1 ∣ ∣ a n ∣ = lim n → ∞ ( n + 2 n + 1 ) ( n + 1 ) 2 ( n + 1 n ) n 2 = lim n → ∞ ( 1 + 1 n + 1 ) 2 n + 1 ( 1 + 1 n 2 + 2 n ) n 2 = e 2 e = e ( 或 lim n → ∞ ∣ a n ∣ n = lim n → ∞ ( 1 + 1 n ) n = e ) . \lim\limits_{n\to\infty}\cfrac{|a_{n+1}|}{|a_n|}=\lim\limits_{n\to\infty}\cfrac{\left(\cfrac{n+2}{n+1}\right)^{(n+1)^2}}{\left(\cfrac{n+1}{n}\right)^{n^2}}=\lim\limits_{n\to\infty}\cfrac{\left(1+\cfrac{1}{n+1}\right)^{2n+1}}{\left(1+\cfrac{1}{n^2+2n}\right)^{n^2}}=\cfrac{e^2}{e}=e\\ (\text{或}\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\lim\limits_{n\to\infty}\left(1+\cfrac{1}{n}\right)^n=e). n→∞lim∣an∣∣an+1∣=n→∞lim(nn+1)n2(n+1n+2)(n+1)2=n→∞lim(1+n2+2n1)n2(1+n+11)2n+1=ee2=e(或n→∞limn∣an∣=n→∞lim(1+n1)n=e).
故收敛半径为 R = 1 e R=\cfrac{1}{e} R=e1,收敛区间为 ( − 1 e , 1 e ) \left(-\cfrac{1}{e},\cfrac{1}{e}\right) (−e1,e1)。(这道题主要利用了审敛法求解)
解 令 x − 1 = t x-1=t x−1=t,幂级数 ∑ n = 1 ∞ n t n \displaystyle\sum^\infty\limits_{n=1}nt^n n=1∑∞ntn的收敛域为 ( − 1 , 1 ) (-1,1) (−1,1)。记其和函数为 φ ( t ) \varphi(t) φ(t),即有
φ ( t ) = ∑ n = 1 ∞ n t n = t ∑ n = 1 ∞ n t n − 1 = t ( ∑ n = 1 ∞ t n ) ′ = t ( t 1 − t ) ′ = t ( 1 − t ) 2 , t ∈ ( − 1 , 1 ) . \begin{aligned} \varphi(t)&=\displaystyle\sum^\infty\limits_{n=1}nt^n=t\displaystyle\sum^\infty\limits_{n=1}nt^{n-1}=t\left(\displaystyle\sum^\infty\limits_{n=1}t^n\right)'\\ &=t\left(\cfrac{t}{1-t}\right)'=\cfrac{t}{(1-t)^2},\quad t\in(-1,1). \end{aligned} φ(t)=n=1∑∞ntn=tn=1∑∞ntn−1=t(n=1∑∞tn)′=t(1−tt)′=(1−t)2t,t∈(−1,1).
于是原级数的和函数
s ( x ) = φ ( x − 1 ) = x − 1 ( 2 − x ) 2 , x ∈ ( 0 , 2 ) . s(x)=\varphi(x-1)=\cfrac{x-1}{(2-x)^2},\quad x\in(0,2). s(x)=φ(x−1)=(2−x)2x−1,x∈(0,2).
(这道题主要利用了换元的方法求解)
解 u n ( x ) = a n x n , a n = 1 n ( n + 1 ) u_n(x)=a_nx^n,a_n=\cfrac{1}{n(n+1)} un(x)=anxn,an=n(n+1)1。由 lim n → ∞ ∣ a n + 1 ∣ ∣ a n ∣ = lim n → ∞ n n + 2 = 1 \lim\limits_{n\to\infty}\cfrac{|a_{n+1}|}{|a_n|}=\lim\limits_{n\to\infty}\cfrac{n}{n+2}=1 n→∞lim∣an∣∣an+1∣=n→∞limn+2n=1,得幂级数的收敛半径 R = 1 R=1 R=1。当 x = ± 1 x=\pm1 x=±1时,级数 ∑ n = 1 ∞ 1 n ( n + 1 ) \displaystyle\sum^\infty\limits_{n=1}\cfrac{1}{n(n+1)} n=1∑∞n(n+1)1与 ∑ n = 1 ∞ ( − 1 ) n n ( n + 1 ) \displaystyle\sum^\infty\limits_{n=1}\cfrac{(-1)^n}{n(n+1)} n=1∑∞n(n+1)(−1)n均收敛,故幂级数的收敛域为 [ − 1 , 1 ] [-1,1] [−1,1]。
设和函数为 s ( x ) s(x) s(x),即 s ( x ) = ∑ n = 1 ∞ x n n ( n + 1 ) s(x)=\displaystyle\sum^\infty\limits_{n=1}\cfrac{x^n}{n(n+1)} s(x)=n=1∑∞n(n+1)xn。
当 x = 0 x=0 x=0时, s ( 0 ) = 0 s(0)=0 s(0)=0;
当 0 < ∣ x ∣ < 1 0<|x|<1 0<∣x∣<1时,
x s ( x ) = ∑ n = 1 ∞ x n + 1 n ( n + 1 ) . xs(x)=\displaystyle\sum^\infty\limits_{n=1}\cfrac{x^{n+1}}{n(n+1)}. xs(x)=n=1∑∞n(n+1)xn+1.
上式两端对 x x x求导,得
[ x s ( x ) ] ′ = ∑ n = 1 ∞ x n n . [xs(x)]'=\displaystyle\sum^\infty\limits_{n=1}\cfrac{x^n}{n}. [xs(x)]′=n=1∑∞nxn.
再求导,得
[ x s ( x ) ] ′ ′ = ∑ n = 1 ∞ x n − 1 = 1 1 − x . [xs(x)]''=\displaystyle\sum^\infty\limits_{n=1}x^{n-1}=\cfrac{1}{1-x}. [xs(x)]′′=n=1∑∞xn−1=1−x1.
注意到 [ x s ( x ) ] ′ ∣ x = 0 = 0 [xs(x)]'\biggm\vert_{x=0}=0 [xs(x)]′∣∣∣∣x=0=0,上式两端从 0 0 0到 x x x积分,得
[ x s ( x ) ] ′ = ∫ 0 x d x 1 − x = − ln ( 1 − x ) . [xs(x)]'=\displaystyle\int^x_0\cfrac{\mathrm{d}x}{1-x}=-\ln(1-x). [xs(x)]′=∫0x1−xdx=−ln(1−x).
再积分,得
x s ( x ) = − ∫ 0 x ln ( 1 − x ) d x = ( 1 − x ) ln ( 1 − x ) + x . xs(x)=-\displaystyle\int^x_0\ln(1-x)\mathrm{d}x=(1-x)\ln(1-x)+x. xs(x)=−∫0xln(1−x)dx=(1−x)ln(1−x)+x.
于是
s ( x ) = 1 − x x ln ( 1 − x ) + 1 , x ∈ ( − 1 , 0 ) ∪ ( 0 , 1 ) . s(x)=\cfrac{1-x}{x}\ln(1-x)+1,\quad x\in(-1,0)\cup(0,1). s(x)=x1−xln(1−x)+1,x∈(−1,0)∪(0,1).
由于幂级数在 x = ± 1 x=\pm1 x=±1处收敛,故和函数分别在 x = ± 1 x=\pm1 x=±1处左连续与右连续,于是 s ( 1 ) = lim s → 1 − s ( x ) = lim s → 1 − 1 − x x ln ( 1 − x ) + 1 = 1 s(1)=\lim\limits_{s\to1^-}s(x)=\lim\limits_{s\to1^-}\cfrac{1-x}{x}\ln(1-x)+1=1 s(1)=s→1−lims(x)=s→1−limx1−xln(1−x)+1=1。
因此
s ( x ) = { 1 + ( 1 x − 1 ) ln ( 1 − x ) , x ∈ [ − 1 , 0 ) ∪ ( 0 , 1 ) , 0 , x = 0 , 1 x = 1. s(x)=\begin{cases} 1+\left(\cfrac{1}{x}-1\right)\ln(1-x),&x\in[-1,0)\cup(0,1),\\ 0,&x=0,\\ 1&x=1. \end{cases} s(x)=⎩⎪⎪⎪⎨⎪⎪⎪⎧1+(x1−1)ln(1−x),0,1x∈[−1,0)∪(0,1),x=0,x=1.
(这道题主要利用了逐项积分和逐项求导求解)
解 利用 ∑ n = 1 ∞ n 2 n ! = e x , x ∈ ( − ∞ , + ∞ ) \displaystyle\sum^\infty\limits_{n=1}\cfrac{n^2}{n!}=e^x,x\in(-\infty,+\infty) n=1∑∞n!n2=ex,x∈(−∞,+∞),取 x = 1 x=1 x=1,有 ∑ n = 1 ∞ 1 n ! = e \displaystyle\sum^\infty\limits_{n=1}\cfrac{1}{n!}=e n=1∑∞n!1=e。
又
∑ n = 1 ∞ n 2 n ! = ∑ n = 1 ∞ n ( n − 1 ) ! = ∑ n = 0 ∞ n + 1 n ! = ∑ n = 0 ∞ n n ! + ∑ n = 0 ∞ n 2 n ! . \displaystyle\sum^\infty\limits_{n=1}\cfrac{n^2}{n!}=\displaystyle\sum^\infty\limits_{n=1}\cfrac{n}{(n-1)!}=\sum^\infty\limits_{n=0}\cfrac{n+1}{n!}=\displaystyle\sum^\infty\limits_{n=0}\cfrac{n}{n!}+\displaystyle\sum^\infty\limits_{n=0}\cfrac{n^2}{n!}. n=1∑∞n!n2=n=1∑∞(n−1)!n=n=0∑∞n!n+1=n=0∑∞n!n+n=0∑∞n!n2.
其中
∑ n = 0 ∞ n n ! = ∑ n = 1 ∞ n n ! = ∑ n = 1 ∞ 1 ( n − 1 ) ! = ∑ n = 0 ∞ 1 n ! . \displaystyle\sum^\infty\limits_{n=0}\cfrac{n}{n!}=\displaystyle\sum^\infty\limits_{n=1}\cfrac{n}{n!}=\displaystyle\sum^\infty\limits_{n=1}\cfrac{1}{(n-1)!}=\displaystyle\sum^\infty\limits_{n=0}\cfrac{1}{n!}. n=0∑