random.sample(population, k)
从 population 中不放回抽取 k 个元素
- population:可以为可迭代是的数据对象,如
list
,set
- k:随机抽取的样本数量
- 不放回抽样
import random
N = range(10)
m = 3
a = random.sample(N, m)
print(a)
# 从0~9的序列中采样了3个样本
Out: [0, 5, 8]
numpy.random.choice(a, size=None, replace=True, p=None)
Help on built-in function choice:
choice(...) method of numpy.random.mtrand.RandomState instance
choice(a, size=None, replace=True, p=None)
Generates a random sample from a given 1-D array
.. versionadded:: 1.7.0
.. note::
New code should use the ``choice`` method of a ``default_rng()``
instance instead; see `random-quick-start`.
Parameters
----------
a : 1-D array-like or int
If an ndarray, a random sample is generated from its elements.
If an int, the random sample is generated as if a were np.arange(a)
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
replace : boolean, optional
Whether the sample is with or without replacement
p : 1-D array-like, optional
The probabilities associated with each entry in a.
If not given the sample assumes a uniform distribution over all
entries in a.
Returns
-------
samples : single item or ndarray
The generated random samples
Raises
------
ValueError
If a is an int and less than zero, if a or p are not 1-dimensional,
if a is an array-like of size 0, if p is not a vector of
probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population
size
See Also
--------
randint, shuffle, permutation
Generator.choice: which should be used in new code
Notes
-----
Sampling random rows from a 2-D array is not possible with this function,
but is possible with `Generator.choice` through its ``axis`` keyword.
Examples
--------
Generate a uniform random sample from np.arange(5) of size 3:
>>> np.random.choice(5, 3)
array([0, 3, 4]) # random
>>> #This is equivalent to np.random.randint(0,5,3)
Generate a non-uniform random sample from np.arange(5) of size 3:
>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0]) # random
Generate a uniform random sample from np.arange(5) of size 3 without
replacement:
>>> np.random.choice(5, 3, replace=False)
array([3,1,0]) # random
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]
Generate a non-uniform random sample from np.arange(5) of size
3 without replacement:
>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0]) # random
Any of the above can be repeated with an arbitrary array-like
instead of just integers. For instance:
>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
dtype=')