- 视觉工程师:工业相机50问
钢铁男儿
机器视觉机器视觉工业相机
1:工业相机的丢帧的问题是由什么原因引起的?经常会有一些机器视觉工程师认为USB接口的工业相机会造成丢帧现象。一般而言,工业相机丢帧与工业相机所采用的传输接口是没有关系的,无论是USB,还是1394、GigE、或者是CameraLink。设计不良的驱动程序或工业相机硬件才是造成丢帧的真正原因:设计不良的工业相机之所以会发生丢帧的现象,其实就是资料通道的堵塞,无法及时处理,所以新的图像进来时,前一张
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
深度学习、模型架构、可拓展性、神经网络、机器学习1.背景介绍深度学习作为人工智能领域最前沿的技术之一,在图像识别、自然语言处理、语音识别等领域取得了突破性的进展。深度学习模型的成功离不开其强大的学习能力和可拓展性。本文将深入探讨深度学习算法的原理、模型架构设计以及可拓展性的关键要素,并通过代码实例和实际应用场景,帮助读者理解如何搭建可拓展的深度学习模型架构。2.核心概念与联系深度学习的核心概念是人
- 图像处理之白平衡(附源码)
FPGA工程狮-阿水
Python图像处理图像处理人工智能pythonisp
图像处理之白平衡(附源码)概要白平衡(WhiteBalance)是图像处理和摄影中的一种技术,旨在消除由于光源色温差异导致的颜色偏差,使得图像中的白色和其他颜色呈现出自然、真实的效果。基本概念白平衡是调整图像中各个颜色通道(红色、绿色和蓝色)的亮度和色彩平衡,以消除由不同光源(如日光、白炽灯、荧光灯等)产生的色偏。其目的是让图像看起来像是在中性白光下拍摄的,从而确保图像中的白色看起来确实是白色,其
- 机器学习之向量化
珠峰日记
AI理论与实践机器学习人工智能
文章目录向量化是什么为什么要向量化提升计算效率简化代码与增强可读性适配模型需求怎么做向量化数据预处理特征提取特征选择向量构建机器学习与深度学习中向量化的区别数据特征提取方式机器学习深度学习模型结构与复杂度机器学习深度学习计算资源需求机器学习深度学习数据规模适应性机器学习深度学习向量化是什么向量化是把数据转化为向量形式进行表示与处理的过程。在机器学习与深度学习的范畴内,现实中的各类数据,像文本、图像
- 利用deepseek AI制作视频的小白教程
银行金融科技
银行信息系统架构详解机器学习人工智能deepseek
以下是基于DeepSeekAI的完整视频制作教程,涵盖从剧本到成片的全流程操作(附关键技巧):一、前期准备(1天)1.分镜优化根据之前的分镜脚本,用Notion或Excel整理出AI友好型分镜表(示例):画面描述关键词时长动态水墨展开成卷轴水墨山水、花瓣特效、东晋风格15秒Q版人物在曲水流觞放纸船全息投影、透明茶具、童声配音45秒2.素材预生成文本转图像:bash#用DeepSeekCoder生成
- 征程 6 VP简介与单算子实操
自动驾驶算法
1.如何理解VPVP,全称VisionProcess,指UCP中的视觉处理功能模块。Backends,指UCP框架中的可分配处理单元。VP模块主要用于模型的前后处理环节,在地平线统一架构中,多种硬件均已搭载了图像处理的算子,而VP模块将图像处理相关的硬件调用进行了封装,通过设置backend来选择不同的硬件方案(若不指定backend,UCP会自动适配负载更低的处理单元),从而平衡开发板负载。VP
- DCM4CHE图像显示
啸鸢
DCM4CHEEDicom医学影像处理
概述本文主要介绍dicom图像从拿到像素数据到显示到图像的基本过程,通过DCM4CHE获取dicom文件像素数据,通过默认窗宽窗位,显示到java的BufferedImage上,并将BufferedImage保存成jpg到本地有关窗宽窗位的解释和处理方法可以参考:https://blog.csdn.net/songzitea/article/details/8505469通过DCM4CHE获取di
- RAG 在多模态数据处理中的应用探索:结合图像与文本生成
hy098543
AIGC
目录引言多模态数据处理的挑战与需求数据异质性与融合难题多样化应用场景的需求RAG在图像与文本生成中的应用架构图像检索与文本生成协同跨模态特征融合与生成关键技术与实现细节图像特征提取与表示文本检索与语义理解跨模态生成模型训练应用案例分析智能设计辅助医疗影像报告生成结论引言随着信息技术的飞速发展,数据呈现出多模态的特性,即包含文本、图像、音频、视频等多种形式。在自然语言处理(NLP)和计算机视觉(CV
- MM-RAIT:多模态检索增强生成(RAG)的认知革命
花生糖@
AIGC学习资料库人工智能深度学习机器学习RAGAI知识库
多模态检索增强生成(RAG)领域迎来了一项里程碑式的突破——MM-RAIT框架通过“评估-训练”双轮驱动,显著提升了主流视觉语言模型的RAG性能,增幅达27%至34%。这项技术不仅解决了多模态AI的认知断层问题,还首次赋予机器类似人类的知识处理能力,即“查资料-思逻辑-答精准”的能力。技术双引擎:从能力测绘到认知进化M2RAG:多模态能力的CT扫描仪M2RAG引入了首创的四维评估体系,覆盖图像描述
- 基于生成对抗网络(GAN)的图像超分辨率实战:从SRGAN到ESRGAN
Evaporator Core
#深度学习强化学习生成模型生成对抗网络人工智能神经网络
图像超分辨率(ImageSuper-Resolution)是一种通过算法将低分辨率图像转换为高分辨率图像的技术,广泛应用于医学影像、卫星图像和视频增强等领域。生成对抗网络(GAN)是图像超分辨率的经典方法,而增强型超分辨率生成对抗网络(ESRGAN)则通过引入残差网络和感知损失进一步提升了图像质量。本文将通过一个完整的实战案例,展示如何使用SRGAN和ESRGAN进行图像超分辨率,并提供详细的代码
- OpenCV-Python实战(1)——OpenCV简介与图像处理基础
数字化转型2025
AI人工智能方向opencvpython图像处理
OpenCV介绍Python安装OpenCV:对于Linux和Windows操作系统,首先需要在shell或cmd中运行以下命令安装NumPy:pipinstallnumpy。然后再安装OpenCV,可以选择仅安装主模块包:pipinstallopencv-python,或者安装完整包(包括主模块和附加模块):pipinstallopencv-contrib-python。OpenCV主要模块:O
- 美颜特效类sdk在智能硬件中的场景应用是怎样的?
Face Beauty美颜SDK
实时音视频美颜sdk视频特效美颜智能硬件实时互动实时音视频
前言:FaceBeauty美颜特效SDK是由前相芯科技员工组建创办的新晋美颜厂商品牌,致力于为用户提供更真实自然的美颜效果,以极致性价比,降低高性能美颜的使用门槛。基于人脸识别和图像渲染技术,为客户提供美颜贴纸、美妆、美体、美发、哈哈镜、手势识别等人像人体特效功能,广泛应用于视频直播、一对一社交、短视频、美颜相机、智能硬件等场景。美颜特效类SDK在智能硬件中的应用场景日益广泛,结合实时图像处理、A
- 【工作记录】python使用总结
星光不负赶路人!
python
1.os库2.xlwt库3.xlrd库4.BeautifulSoup库5.panda库6.json库7.re正则8.ddddocr登录网站的时候,经常输入用户名和密码后会遇到验证码,ddddocr是一款强大的通用开源ocr识别库,具有高效、准确、易用的特点,广泛应用于图像处理和文字识别任务。importddddocrtry:login_page.wait_for_timeout(2000)#等待2
- DeepSeek 3FS 与 JuiceFS:架构与特性比较
运维人工智能
近期,DeepSeek开源了其文件系统Fire-FlyerFileSystem(3FS),使得文件系统这一有着70多年历时的“古老”的技术,又获得了各方的关注。在AI业务中,企业需要处理大量的文本、图像、视频等非结构化数据,还需要应对数据量的爆炸式增长,分布式文件系统因此成为AI训练的关键存储技术。本文旨在通过深入分析3FS的实现机制,并与JuiceFS进行对比,以帮助用户理解两种文件系统的区别及
- OpenCV图像拼接(2)特征查找与图像匹配之基于仿射变换的图像匹配的一个类cv::detail::AffineBestOf2NearestMatcher
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::AffineBestOf2NearestMatcher是OpenCV库中用于实现基于仿射变换的图像匹配的一个类。这个类主要用于在图像拼接流程中,寻找图像间的对应关系,并假设图像间存在仿射变换(即考虑缩放、旋转和平移的变换)。它通过使用“最佳
- VLLM专题(三十五)—多模态数据处理
AI专题精讲
大模型专题系列人工智能
为了在vLLM中实现各种优化,例如分块预填充和前缀缓存,我们使用BaseMultiModalProcessor来提供占位符特征标记(例如)与多模态输入(例如原始输入图像)之间的对应关系,基于HF处理器的输出。以下是BaseMultiModalProcessor的主要特性:提示更新检测HF处理器的主要职责之一是使用占位符标记更新提示。例如:在字符串的开头插入特征占位符标记(例如…,其数量等于特征大小
- 李开复:AI 2.0 时代的价值
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
人工智能,AI2.0,价值创造,伦理挑战,未来趋势1.背景介绍人工智能(AI)技术近年来发展迅速,从语音识别、图像识别到自然语言处理,AI已经渗透到我们生活的方方面面。李开复,作为一位享誉全球的人工智能专家,在《AI2.0时代的价值》一文中,深刻地探讨了AI2.0时代带来的机遇与挑战,以及AI如何为人类创造价值。AI1.0时代主要集中在规则驱动的系统,例如围棋、象棋等游戏的AI。而AI2.0时代则
- 李开复:AI 2.0 时代的机遇
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
人工智能,深度学习,Transformer,大模型,通用人工智能,AI2.0,应用场景,未来趋势1.背景介绍人工智能(AI)技术近年来发展迅速,从语音识别、图像识别到自然语言处理等领域取得了突破性进展。其中,深度学习作为人工智能的核心技术之一,推动了AI技术的飞速发展。然而,深度学习模型的训练成本高、数据依赖性强、可解释性差等问题仍然制约着AI技术的进一步发展。李开复先生在《AI2.0时代的机遇》
- YOLOv8 的简介 及C#中如何简单应用YOLOv8
码上有潜
YOLOv8YOLO
YOLOv8是YOLO(YouOnlyLookOnce)系列中的最新版本,是一种用于目标检测和图像分割的深度学习模型。YOLO模型以其快速和准确的目标检测性能而著称,广泛应用于实时应用程序中。主要特点高效性:YOLOv8在保持高检测速度的同时,进一步提高了检测精度。端到端训练:可以直接从图像输入端到分类结果输出,简化了训练和部署过程。改进的架构:包括更深的网络结构、更复杂的特征提取方法以及更高效的
- OpenCV多分辨率模板匹配与容错优化实战指南
追寻向上
opencv人工智能计算机视觉
第一章:问题背景与挑战1.1传统模板匹配的局限性模板匹配(TemplateMatching)是计算机视觉中基础且广泛使用的技术,其核心思想是通过滑动窗口在目标图像中寻找与模板最相似的位置。然而,传统方法(如OpenCV的cv2.matchTemplate)在实际应用中存在以下问题:尺寸敏感性当目标的实际尺寸与模板不一致时,匹配结果会严重偏离。例如,在工业检测中,摄像头与物体的距离变化会导致目标缩放
- turfijs合并相邻或者相交多边形
库库的写代码
arcgis
文章目录前言合并多边形一、安装turf二、加载高德三、绘制图形四、计算交点六、绘制图像七、效果前言合并多边形一、安装turfnpmi@turf/turf二、加载高德AMapLoader.load({key:"你的key",//申请好的Web端开发者Key,首次调用load时必填version:"2.0",//指定要加载的JSAPI的版本,缺省时默认为1.4.15plugins:["AMap.Pol
- 【ArcGIS】从DEM中提取经纬度
榴女士
arcgis
老师给了我一幅DEM图像,由于后面的处理过程中需要该区域对应的SRTM1DEM数据,所以我必须先知道这幅DEM是哪个区域。由于没有其他的信息,我就不知道该怎么办了。后面查了一些网页,找到的解决办法是:通过DEM提取经纬度,这样就可以知道DEM的区域。把提取经纬度的过程记录下来,以防后面又忘记了。1、栅格转点【转换-由栅格转出-栅格转点】;2、打开点图层属性表,新建两个字段“lon”&“lat”;3
- SciPy 安装指南
froginwe11
开发语言
SciPy安装指南引言SciPy是一个开源的Python科学计算库,它基于NumPy库,提供了大量的科学和工程计算功能。SciPy包含了用于优化、线性代数、积分、插值、信号和图像处理、特殊函数、统计分析、离散傅里叶变换等功能的模块。本文将详细介绍如何在您的系统上安装SciPy。安装前的准备在开始安装SciPy之前,请确保您的系统满足以下条件:您已安装Python,且版本在3.5或更高。您已安装pi
- OpenCV计算摄影学(23)艺术化风格化处理函数stylization()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述风格化的目的是生成不以照片写实为目标的多种多样数字图像效果。边缘感知滤波器是风格化处理的理想选择,因为它们能够弱化低对比度区域,同时保留或增强高对比度特征。该函数通过艺术化风格化处理,将输入图像转换为具有油画或卡通风格的图像,增强边缘和纹理的对比度,同时保留主要颜
- 【新生必会】30个较难Python脚本,建议收藏。
.Boss.
信息可视化python人工智能算法开发语言机器学习
本篇较难,建议优先学习上篇;20个硬核Python脚本-CSDN博客接上篇文章,对于Pyhon的学习,上篇学习的结束相信大家对于Pyhon有了一定的理解和经验,学习完上篇文章之后再研究研究剩下的30个脚本你将会有所成就!加油!目录21、数据库连接-SQLite22、图像处理-Pillow23、图形界面-Tkinter24、文本生成-Faker25、加密和解密-cryptography26、Sock
- LeetCode 第6题:Z字形变换(Python3解法)
little student
LeetCodeleetcode算法职场和发展
文章目录1:问题描述2:问题分析2.1时间复杂度和空间复杂度2.2二维矩阵2.2.1构建矩阵2.2.2判断位置2.2.3边界2.2.4代码2.3改进的二维矩阵2.3.1代码2.4构造法2.4.1代码1:问题描述来源:LeetCode难度:中等问题详情:将一个给定字符串s根据给定的行数numRows,以从上往下、从左到右进行Z字形排列。比如输入字符串为“PAYPALISHIRING”行数为3时,排列
- 人工智能技术篇*卷(三)
code_stream
#人工智能人工智能
接下来,我们在神经网络方面继续展开神经网络多层感知机(MLP)解决问题:多层感知机是一种基本的前馈神经网络,可用于解决分类和回归问题。它通过多个神经元层的非线性变换,能够学习复杂的非线性关系,对数据进行分类或预测连续值。例如,在手写数字识别中,它可以从数字图像的像素数据中学习到特征模式,从而判断该数字是0-9中的哪一个;在房价预测中,根据房屋的面积、房间数量等特征预测房价。案例:以手写数字识别为例
- 力扣--数组6.Z字形变换
gotoc丶
leetcode算法c++c语言数据结构
思路分析处理特殊情况:如果numRows为1,那么字符排列与原字符串相同,无需进行转换,直接返回原字符串。定义和初始化变量:n:字符串长度。k:一个完整的“V”字形周期长度,计算公式为2*numRows-2。a:一个包含numRows个字符串的向量,用于存储每一行的字符。遍历字符串并填充每行字符:遍历字符串中的每个字符,通过计算确定字符属于哪一行,然后将该字符添加到对应的行。行的计算方式为min(
- 答题卡图像识别 需求分析、市场分析和技术实现
weixin_34037977
人工智能开发工具json
答题卡图像识别需求分析、市场分析和技术实现一、需求分析一、以接口的方式开发此需求:1:接收图片以上传的方式把图片发送到接口。2:识别图片接口接收到图片后,进行图像识别。3:返回数据返回识别后的JSON格式数据。二、答题卡图片识别的具体要求:图片是通过手机、相机、扫描仪等设备拍照而来,其中手机、相机拍出的照片会出现像素低、图像不正、聚焦不清楚等问题;1:图片只要是人眼能看清楚的即可完成识别;2:80
- 图像分割基础:使用Python和scikit-image库
0dayNu1L
机器学习项目实战python人工智能机器学习
大家好,今天我们将一起探讨图像分割的基础知识,并使用Python编程语言以及scikit-image库来实现一个简单的图像分割示例。图像分割是图像处理中的一项重要技术,它允许我们将图像划分为多个部分或对象,这对于图像分析和计算机视觉任务至关重要。0dayNu1L-CSDN博客目录一、环境准备二、图像分割示例1.导入必要的库2.读取并显示图像3.创建标签数组并进行阈值分割4.使用颜色表示标签三、结果
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l