原github链接:https://github.com/hpc203/YOLOP-opencv-dnn
源代码:
import cv2
import argparse
import numpy as np
class yolop():
def __init__(self, confThreshold=0.25, nmsThreshold=0.5, objThreshold=0.45):
with open('bdd100k.names', 'rt') as f:
self.classes = f.read().rstrip('\n').split('\n') ###这个是在bdd100k数据集上训练的模型做opencv部署的,如果你在自己的数据集上训练出的模型做opencv部署,那么需要修改self.classes
num_classes = len(self.classes)
anchors = [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]]
self.nl = len(anchors)
self.na = len(anchors[0]) // 2
self.no = num_classes + 5
self.stride = np.array([8., 16., 32.])
self.anchor_grid = np.asarray(anchors, dtype=np.float32).reshape(self.nl, -1, 2)
self.inpWidth = 640
self.inpHeight = 640
self.generate_grid()
self.net = cv2.dnn.readNet('yolop.onnx')
self.confThreshold = confThreshold
self.nmsThreshold = nmsThreshold
self.objThreshold = objThreshold
self.mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 1, 3)
self.std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 1, 3)
self.keep_ratio = True
def generate_grid(self):
self.grid = [np.zeros(1)] * self.nl
self.length = []
self.areas = []
for i in range(self.nl):
h, w = int(self.inpHeight/self.stride[i]), int(self.inpWidth/self.stride[i])
self.length.append(int(self.na * h * w))
self.areas.append(h*w)
if self.grid[i].shape[2:4] != (h,w):
self.grid[i] = self._make_grid(w, h)
def _make_grid(self, nx=20, ny=20):
xv, yv = np.meshgrid(np.arange(ny), np.arange(nx))
return np.stack((xv, yv), 2).reshape((-1, 2)).astype(np.float32)
def postprocess(self, frame, outs, newh, neww, padh, padw):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
ratioh, ratiow = frameHeight / newh, frameWidth / neww
# Scan through all the bounding boxes output from the network and keep only the
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
classIds = []
confidences = []
boxes = []
for detection in outs:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > self.confThreshold and detection[4] > self.objThreshold:
center_x = int((detection[0]-padw) * ratiow)
center_y = int((detection[1]-padh) * ratioh)
width = int(detection[2] * ratiow)
height = int(detection[3] * ratioh)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence) * detection[4])
boxes.append([left, top, width, height])
# Perform non maximum suppression to eliminate redundant overlapping boxes with
# lower confidences.
indices = cv2.dnn.NMSBoxes(boxes, confidences, self.confThreshold, self.nmsThreshold)
for i in indices:
i = i[0]
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
frame = self.drawPred(frame, classIds[i], confidences[i], left, top, left + width, top + height)
return frame
def drawPred(self, frame, classId, conf, left, top, right, bottom):
# Draw a bounding box.
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=2)
label = '%.2f' % conf
label = '%s:%s' % (self.classes[classId], label)
# Display the label at the top of the bounding box
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=1)
return frame
def resize_image(self, srcimg):
padh, padw, newh, neww = 0, 0, self.inpHeight, self.inpWidth
if self.keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
hw_scale = srcimg.shape[0] / srcimg.shape[1]
if hw_scale > 1:
newh, neww = self.inpHeight, int(self.inpWidth / hw_scale)
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
padw = int((self.inpWidth - neww) * 0.5)
img = cv2.copyMakeBorder(img, 0, 0, padw, self.inpWidth - neww - padw, cv2.BORDER_CONSTANT,
value=0) # add border
else:
newh, neww = int(self.inpHeight * hw_scale), self.inpWidth
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
padh = int((self.inpHeight - newh) * 0.5)
img = cv2.copyMakeBorder(img, padh, self.inpHeight - newh - padh, 0, 0, cv2.BORDER_CONSTANT, value=0)
else:
img = cv2.resize(srcimg, (self.inpWidth, self.inpHeight), interpolation=cv2.INTER_AREA)
return img, newh, neww, padh, padw
def _normalize(self, img): ### c++: https://blog.csdn.net/wuqingshan2010/article/details/107727909
img = img.astype(np.float32) / 255.0
img = (img - self.mean) / self.std
return img
def detect(self, srcimg):
img, newh, neww, padh, padw = self.resize_image(srcimg)
img = self._normalize(img)
blob = cv2.dnn.blobFromImage(img)
# Sets the input to the network
self.net.setInput(blob)
# Runs the forward pass to get output of the output layers
outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
# inference output
outimg = srcimg.copy()
drive_area_mask = outs[1][:, padh:(self.inpHeight - padh), padw:(self.inpWidth - padw)]
seg_id = np.argmax(drive_area_mask, axis=0).astype(np.uint8)
seg_id = cv2.resize(seg_id, (srcimg.shape[1], srcimg.shape[0]), interpolation=cv2.INTER_NEAREST)
outimg[seg_id == 1] = [0, 255, 0]
lane_line_mask = outs[2][:, padh:(self.inpHeight - padh), padw:(self.inpWidth - padw)]
seg_id = np.argmax(lane_line_mask, axis=0).astype(np.uint8)
seg_id = cv2.resize(seg_id, (srcimg.shape[1], srcimg.shape[0]), interpolation=cv2.INTER_NEAREST)
outimg[seg_id == 1] = [255, 0, 0]
det_out = outs[0]
row_ind = 0
for i in range(self.nl):
det_out[row_ind:row_ind+self.length[i], 0:2] = (det_out[row_ind:row_ind+self.length[i], 0:2] * 2. - 0.5 + np.tile(self.grid[i],(self.na, 1))) * int(self.stride[i])
det_out[row_ind:row_ind+self.length[i], 2:4] = (det_out[row_ind:row_ind+self.length[i], 2:4] * 2) ** 2 * np.repeat(self.anchor_grid[i], self.areas[i], axis=0)
row_ind += self.length[i]
outimg = self.postprocess(outimg, det_out, newh, neww, padh, padw)
return outimg
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgpath", type=str, default='images/0ace96c3-48481887.jpg', help="image path")
parser.add_argument('--confThreshold', default=0.25, type=float, help='class confidence')
parser.add_argument('--nmsThreshold', default=0.45, type=float, help='nms iou thresh')
parser.add_argument('--objThreshold', default=0.5, type=float, help='object confidence')
args = parser.parse_args()
yolonet = yolop(confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold, objThreshold=args.objThreshold)
srcimg = cv2.imread(args.imgpath)
outimg = yolonet.detect(srcimg)
winName = 'Deep learning object detection in OpenCV'
cv2.namedWindow(winName, 0)
cv2.imshow(winName, outimg)
cv2.waitKey(0)
cv2.destroyAllWindows()
添加推理视频的代码如下:
import time
import cv2
import argparse
import numpy as np
class yolop():
def __init__(self, confThreshold=0.25, nmsThreshold=0.5, objThreshold=0.45):
with open('bdd100k.names', 'rt') as f:
self.classes = f.read().rstrip('\n').split('\n') ###这个是在bdd100k数据集上训练的模型做opencv部署的,如果你在自己的数据集上训练出的模型做opencv部署,那么需要修改self.classes
num_classes = len(self.classes)
anchors = [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]]
self.nl = len(anchors)
self.na = len(anchors[0]) // 2
self.no = num_classes + 5
self.stride = np.array([8., 16., 32.])
self.anchor_grid = np.asarray(anchors, dtype=np.float32).reshape(self.nl, -1, 2)
self.inpWidth = 640
self.inpHeight = 640
self.generate_grid()
self.net = cv2.dnn.readNet('yolop.onnx')
self.confThreshold = confThreshold
self.nmsThreshold = nmsThreshold
self.objThreshold = objThreshold
self.mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 1, 3)
self.std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 1, 3)
self.keep_ratio = True
def generate_grid(self):
self.grid = [np.zeros(1)] * self.nl
self.length = []
self.areas = []
for i in range(self.nl):
h, w = int(self.inpHeight/self.stride[i]), int(self.inpWidth/self.stride[i])
self.length.append(int(self.na * h * w))
self.areas.append(h*w)
if self.grid[i].shape[2:4] != (h,w):
self.grid[i] = self._make_grid(w, h)
def _make_grid(self, nx=20, ny=20):
xv, yv = np.meshgrid(np.arange(ny), np.arange(nx))
return np.stack((xv, yv), 2).reshape((-1, 2)).astype(np.float32)
def postprocess(self, frame, outs, newh, neww, padh, padw):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
ratioh, ratiow = frameHeight / newh, frameWidth / neww
# Scan through all the bounding boxes output from the network and keep only the
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
classIds = []
confidences = []
boxes = []
for detection in outs:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > self.confThreshold and detection[4] > self.objThreshold:
center_x = int((detection[0]-padw) * ratiow)
center_y = int((detection[1]-padh) * ratioh)
width = int(detection[2] * ratiow)
height = int(detection[3] * ratioh)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence) * detection[4])
boxes.append([left, top, width, height])
# Perform non maximum suppression to eliminate redundant overlapping boxes with
# lower confidences.
indices = cv2.dnn.NMSBoxes(boxes, confidences, self.confThreshold, self.nmsThreshold)
for i in indices:
#i = i[0]
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
frame = self.drawPred(frame, classIds[i], confidences[i], left, top, left + width, top + height)
return frame
def drawPred(self, frame, classId, conf, left, top, right, bottom):
# Draw a bounding box.
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=2)
label = '%.2f' % conf
label = '%s:%s' % (self.classes[classId], label)
# Display the label at the top of the bounding box
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=1)
return frame
def resize_image(self, srcimg):
padh, padw, newh, neww = 0, 0, self.inpHeight, self.inpWidth
if self.keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
hw_scale = srcimg.shape[0] / srcimg.shape[1]
if hw_scale > 1:
newh, neww = self.inpHeight, int(self.inpWidth / hw_scale)
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
padw = int((self.inpWidth - neww) * 0.5)
img = cv2.copyMakeBorder(img, 0, 0, padw, self.inpWidth - neww - padw, cv2.BORDER_CONSTANT,
value=0) # add border
else:
newh, neww = int(self.inpHeight * hw_scale), self.inpWidth
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
padh = int((self.inpHeight - newh) * 0.5)
img = cv2.copyMakeBorder(img, padh, self.inpHeight - newh - padh, 0, 0, cv2.BORDER_CONSTANT, value=0)
else:
img = cv2.resize(srcimg, (self.inpWidth, self.inpHeight), interpolation=cv2.INTER_AREA)
return img, newh, neww, padh, padw
def _normalize(self, img): ### c++: https://blog.csdn.net/wuqingshan2010/article/details/107727909
img = img.astype(np.float32) / 255.0
img = (img - self.mean) / self.std
return img
def detect(self, srcimg):
img, newh, neww, padh, padw = self.resize_image(srcimg)
img = self._normalize(img)
blob = cv2.dnn.blobFromImage(img)
# Sets the input to the network
self.net.setInput(blob)
# Runs the forward pass to get output of the output layers
outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
# inference output
outimg = srcimg.copy()
drive_area_mask = outs[1][:, padh:(self.inpHeight - padh), padw:(self.inpWidth - padw)]
seg_id = np.argmax(drive_area_mask, axis=0).astype(np.uint8)
seg_id = cv2.resize(seg_id, (srcimg.shape[1], srcimg.shape[0]), interpolation=cv2.INTER_NEAREST)
outimg[seg_id == 1] = [0, 255, 0]
lane_line_mask = outs[2][:, padh:(self.inpHeight - padh), padw:(self.inpWidth - padw)]
seg_id = np.argmax(lane_line_mask, axis=0).astype(np.uint8)
seg_id = cv2.resize(seg_id, (srcimg.shape[1], srcimg.shape[0]), interpolation=cv2.INTER_NEAREST)
outimg[seg_id == 1] = [255, 0, 0]
det_out = outs[0]
row_ind = 0
for i in range(self.nl):
det_out[row_ind:row_ind+self.length[i], 0:2] = (det_out[row_ind:row_ind+self.length[i], 0:2] * 2. - 0.5 + np.tile(self.grid[i],(self.na, 1))) * int(self.stride[i])
det_out[row_ind:row_ind+self.length[i], 2:4] = (det_out[row_ind:row_ind+self.length[i], 2:4] * 2) ** 2 * np.repeat(self.anchor_grid[i], self.areas[i], axis=0)
row_ind += self.length[i]
outimg = self.postprocess(outimg, det_out, newh, neww, padh, padw)
return outimg
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgpath", type=str, default='images/test_video2.mp4', help="image path")
parser.add_argument('--confThreshold', default=0.25, type=float, help='class confidence')
parser.add_argument('--nmsThreshold', default=0.45, type=float, help='nms iou thresh')
parser.add_argument('--objThreshold', default=0.5, type=float, help='object confidence')
args = parser.parse_args()
# yolonet = yolop(confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold, objThreshold=args.objThreshold)
# srcimg = cv2.imread(args.imgpath)
# outimg = yolonet.detect(srcimg)
if not args.imgpath.endswith('.mp4'):
net = yolop(confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold, objThreshold=args.objThreshold)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
srcimg = cv2.imread(args.imgpath)
out_img = net.detect(srcimg)
cv2.namedWindow('srcimg', cv2.WINDOW_NORMAL)
cv2.imshow('srcimg', srcimg)
winName = 'Deep learning object detection in Opencv-DNN'
cv2.namedWindow(winName, cv2.WINDOW_NORMAL)
cv2.imshow(winName, out_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
else:
net = yolop(confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold, objThreshold=args.objThreshold)
cap = cv2.VideoCapture(args.imgpath)
if not cap.isOpened():
exit("Video open failed.")
status = True
while status:
status, frame = cap.read()
if not status:
print("Done processing")
break
out_img = net.detect(frame)
cv2.namedWindow('srcimg', cv2.WINDOW_NORMAL)
cv2.imshow('srcimg', frame)
winName = 'Deep learning object detection in Openc-DNN'
cv2.namedWindow(winName, cv2.WINDOW_NORMAL)
cv2.imshow(winName, out_img)
cv2.waitKey(1)
cv2.destroyAllWindows()