VGA的全称是Video Graphics Array,即视频图形阵列,是一个使用模拟信号进行视频传
输的标准。早期的CRT显示器由于设计制造上的原因,只能接收模拟信号输入,因此计算机内
部的显卡负责进行数模转换,而VGA接口就是显卡上输出模拟信号的接口。如今液晶显示器虽
然可以直接接收数字信号,但是为了兼容显卡上的VGA接口,也大都支持VGA标准。
VGA端口的结构:
VGA端口是视频输出端口,端口一共包含15个管脚,如下图:
VGA原理:
在通常使用的连接方法里面,15个管脚里面的5个是最重要的,他们
包括3个基本红,绿,蓝三条基本色彩线和水平与垂直两条控制线
VGA接口标准:
VGA工业标准所要求的频率:
• 时钟频率: 25.175MHz(像素输出的频率);
• 行频: 31469Hz;
• 场频: 59.94Hz。
显示器技术规格提供的行频一般在30kHz~45kHz(保守数据),场频一般在
50Hz~75Hz(保守数据),针对以上保守数据,以30kHz的行频进行扫描时
所需时钟频率为:30kHz×800(行周期)=24MHz,则场频为:30kHz÷525(
场周期)=57.14Hz
在VGA视频传输标准中,视频图像被分解为红、绿、蓝三原色信号,经过数模转换之后,在行同步(HSYNC)和场同步(VSYNC)信号的同步下分别在三个独立通道传输。VGA在传输过程中的同步时序分为行时序和场时序
从上面两幅图中我们可以看到VGA传输过程中的行同步时序和场同步时序非常类似,一行或一场(又称一帧)数据都分为四个部分:低电平同步脉冲、显示后沿、有效数据段以及显示前沿。
行同步信号HSYNC在一个行扫描周期中完成一行图像的显示,其中在a段维持一段时间的低电平用于数据同步,其余时间拉高;在有效数据期间(c段),红绿蓝三原色数据通道上输出一行图像信号其余时间数据无效。
与之类似,场同步信号在在一个场扫描周期中完成一帧图像的显示,不同的是行扫描周期的基本单位是像素点时钟,即完成一个像素点显示所需要的时间;而场扫描周期的基本单位是完成一行图像显示所需要的时间。
早期的VGA特指分辨率为640X480的显示模式,后来根据分辨率的不同,VGA又分为VGA(640x480)、SVGA(800x600)、XGA(1024x768)、SXGA(1280x1024)等。不同分辨率的VGA显示时序是类似的,仅存在参数上的差异,如图 18.1.5所示。
需要注意的是,即便分辨率相同,刷新速率(每秒钟图像更新次数)不一样时,对应的VGA像素时钟及时序参数也存在差异。例如,显示模式“640480@75”刷新速率为75hz,与相同分辨率下刷新速率为60hz的“640480@60”模式相比,像素时钟更快,其他时序参数也不尽相同。
本节实验任务是使用FPGA开发板上的VGA接口在显示器上显示彩条,要求分辨率为
640*480,刷新速率为60hz。
此部分实现彩条显示只需要给像素横坐标设置范围,在规定范围显示对应的颜色即可
module VGA_colorbar_test(
OSC_50, //原CLK2_50时钟信号
VGA_CLK, //VGA自时钟
VGA_HS, //行同步信号
VGA_VS, //场同步信号
VGA_BLANK, //复合空白信号控制信号 当BLANK为低电平时模拟视频输出消隐电平,此时从R9~R0,G9~G0,B9~B0输入的所有数据被忽略
VGA_SYNC, //符合同步控制信号 行时序和场时序都要产生同步脉冲
VGA_R, //VGA绿色
VGA_B, //VGA蓝色
VGA_G); //VGA绿色
input OSC_50; //外部时钟信号CLK2_50
output VGA_CLK,VGA_HS,VGA_VS,VGA_BLANK,VGA_SYNC;
output [7:0] VGA_R,VGA_B,VGA_G;
parameter H_FRONT = 16; //行同步前沿信号周期长
parameter H_SYNC = 96; //行同步信号周期长
parameter H_BACK = 48; //行同步后沿信号周期长
parameter H_ACT = 640; //行显示周期长
parameter H_BLANK = H_FRONT+H_SYNC+H_BACK; //行空白信号总周期长
parameter H_TOTAL = H_FRONT+H_SYNC+H_BACK+H_ACT; //行总周期长耗时
parameter V_FRONT = 11; //场同步前沿信号周期长
parameter V_SYNC = 2; //场同步信号周期长
parameter V_BACK = 31; //场同步后沿信号周期长
parameter V_ACT = 480; //场显示周期长
parameter V_BLANK = V_FRONT+V_SYNC+V_BACK; //场空白信号总周期长
parameter V_TOTAL = V_FRONT+V_SYNC+V_BACK+V_ACT; //场总周期长耗时
reg [10:0] H_Cont; //行周期计数器
reg [10:0] V_Cont; //场周期计数器
wire [7:0] VGA_R; //VGA红色控制线
wire [7:0] VGA_G; //VGA绿色控制线
wire [7:0] VGA_B; //VGA蓝色控制线
reg VGA_HS;
reg VGA_VS;
reg [10:0] X; //当前行第几个像素点
reg [10:0] Y; //当前场第几行
reg CLK_25;
always@(posedge OSC_50)begin
CLK_25=~CLK_25; //时钟
end
assign VGA_SYNC = 1'b0; //同步信号低电平
assign VGA_BLANK = ~((H_Cont<H_BLANK)||(V_Cont<V_BLANK)); //当行计数器小于行空白总长或场计数器小于场空白总长时,空白信号低电平
assign VGA_CLK = ~CLK_to_DAC; //VGA时钟等于CLK_25取反
assign CLK_to_DAC = CLK_25;
always@(posedge CLK_to_DAC)begin
if(H_Cont<H_TOTAL) //如果行计数器小于行总时长
H_Cont<=H_Cont+1'b1; //行计数器+1
else H_Cont<=0; //否则行计数器清零
if(H_Cont==H_FRONT-1) //如果行计数器等于行前沿空白时间-1
VGA_HS<=1'b0; //行同步信号置0
if(H_Cont==H_FRONT+H_SYNC-1) //如果行计数器等于行前沿+行同步-1
VGA_HS<=1'b1; //行同步信号置1
if(H_Cont>=H_BLANK) //如果行计数器大于等于行空白总时长
X<=H_Cont-H_BLANK; //X等于行计数器-行空白总时长 (X为当前行第几个像素点)
else X<=0; //否则X为0
end
always@(posedge VGA_HS)begin
if(V_Cont<V_TOTAL) //如果场计数器小于行总时长
V_Cont<=V_Cont+1'b1; //场计数器+1
else V_Cont<=0; //否则场计数器清零
if(V_Cont==V_FRONT-1) //如果场计数器等于场前沿空白时间-1
VGA_VS<=1'b0; //场同步信号置0
if(V_Cont==V_FRONT+V_SYNC-1) //如果场计数器等于行前沿+场同步-1
VGA_VS<=1'b1; //场同步信号置1
if(V_Cont>=V_BLANK) //如果场计数器大于等于场空白总时长
Y<=V_Cont-V_BLANK; //Y等于场计数器-场空白总时长 (Y为当前场第几行)
else Y<=0; //否则Y为0
end
reg valid_yr;
always@(posedge CLK_to_DAC)begin
if(V_Cont == 10'd32) //场计数器=32时
valid_yr<=1'b1; //行输入激活
else if(V_Cont==10'd512) //场计数器=512时
valid_yr<=1'b0; //行输入冻结
end
wire valid_y=valid_yr; //连线
reg valid_r;
always@(posedge CLK_to_DAC)begin
if((H_Cont == 10'd32)&&valid_y) //行计数器=32时
valid_r<=1'b1; //像素输入激活
else if((H_Cont==10'd512)&&valid_y) //行计数器=512时
valid_r<=1'b0; //像素输入冻结
end
wire valid = valid_r; //连线
assign x_dis=X; //连线X
assign y_dis=Y; //连线Y
// reg[7:0] char_bit;
// always@(posedge CLK_to_DAC)
// if(X==10'd144)char_bit<=9'd240; //当显示到144像素时准备开始输出图像数据
// else if(X>10'd144&&X<10'd384) //左边距屏幕144像素到416像素时 416=144+272(图像宽度)
// char_bit<=char_bit-1'b1; //倒着输出图像信息
reg[29:0] vga_rgb; //定义颜色缓存
always@(posedge CLK_to_DAC) begin
if(X>=0&&X<200)begin //X控制图像的横向显示边界:左边距屏幕左边144像素 右边界距屏幕左边界416像素
vga_rgb<=30'hffffffffff; //白色
end
else if(X>=200&&X<400)begin
vga_rgb<=30'hf00ff65f1f;
end
else if(X>=400&&X<600)begin
vga_rgb<=30'h9563486251;
end
else begin
vga_rgb<=30'h5864928654;
end
end
assign VGA_R=vga_rgb[23:16];
assign VGA_G=vga_rgb[15:8];
assign VGA_B=vga_rgb[7:0];
endmodule
简单思考我们可以知道只需要将屏幕分成两种颜色,一种作为底色,一种作为名字的颜色来区分,即可显示名字。
字符(包括汉字、字母和符号等)的本质都是点阵,在VGA屏幕上体现为字符显示区域内
像素点的集合。字符的大小决定了字符显示区域内像素点的数目,而字符的样式(字体、颜色
等)则决定了各像素点的颜色值。因此,在显示字符之前,我们需要先指定字符的大小、样式,
然后获取该字符的点阵,这个过程我们称之为“提取字模”,或简称“取模”。
我们一般使用0和1的组合来描述字符的点阵排列:点阵中每个像素点用一位(1 bit)数据来表示,其中用于表征字符的像素点用数字1来表示,其他的像素点作为背景用数字0来表示,如图 20.4.2所示。采用这种方式描述的字符是不含有颜色特征的,只能区分点阵中的字符和背景。
字模的提取可通过字符取模软件来实现,在这里我们使用取模软件“PCtoLCD2002”来获
取我们名字的字模
接下来我们将取模软件PCtoLCD2002切换至图形模式,在菜单栏中点击“模式”,然后选
择“图形模式”。
打开我们刚刚保存的图片
在生成字模之前,我们需要先设置字模的格式。在菜单栏中点击“选项”,并在弹出的配
置界面中按照下图进行配置,配置完成后点击确定。
配置字模选项完成后,点击“生成字模”,即可得到汉字“正点原子”所对应的点阵数据,
如下图所示:
最后点击保存字模,可将生成的点阵数据保存在txt格式的文本文档中。数据以十六进制显示,每行有16个Byte,对应每行共128个像素点;共有16行,对应每个汉字的高度为16
module VGA_test(
OSC_50, //原CLK2_50时钟信号
VGA_CLK, //VGA自时钟
VGA_HS, //行同步信号
VGA_VS, //场同步信号
VGA_BLANK, //复合空白信号控制信号 当BLANK为低电平时模拟视频输出消隐电平,此时从R9~R0,G9~G0,B9~B0输入的所有数据被忽略
VGA_SYNC, //符合同步控制信号 行时序和场时序都要产生同步脉冲
VGA_R, //VGA绿色
VGA_B, //VGA蓝色
VGA_G); //VGA绿色
input OSC_50; //外部时钟信号CLK2_50
output VGA_CLK,VGA_HS,VGA_VS,VGA_BLANK,VGA_SYNC;
output [7:0] VGA_R,VGA_B,VGA_G;
parameter H_FRONT = 16; //行同步前沿信号周期长
parameter H_SYNC = 96; //行同步信号周期长
parameter H_BACK = 48; //行同步后沿信号周期长
parameter H_ACT = 640; //行显示周期长
parameter H_BLANK = H_FRONT+H_SYNC+H_BACK; //行空白信号总周期长
parameter H_TOTAL = H_FRONT+H_SYNC+H_BACK+H_ACT; //行总周期长耗时
parameter V_FRONT = 11; //场同步前沿信号周期长
parameter V_SYNC = 2; //场同步信号周期长
parameter V_BACK = 31; //场同步后沿信号周期长
parameter V_ACT = 480; //场显示周期长
parameter V_BLANK = V_FRONT+V_SYNC+V_BACK; //场空白信号总周期长
parameter V_TOTAL = V_FRONT+V_SYNC+V_BACK+V_ACT; //场总周期长耗时
reg [10:0] H_Cont; //行周期计数器
reg [10:0] V_Cont; //场周期计数器
wire [7:0] VGA_R; //VGA红色控制线
wire [7:0] VGA_G; //VGA绿色控制线
wire [7:0] VGA_B; //VGA蓝色控制线
reg VGA_HS;
reg VGA_VS;
reg [10:0] X; //当前行第几个像素点
reg [10:0] Y; //当前场第几行
reg CLK_25;
always@(posedge OSC_50)
begin
CLK_25=~CLK_25; //时钟
end
assign VGA_SYNC = 1'b0; //同步信号低电平
assign VGA_BLANK = ~((H_Cont<H_BLANK)||(V_Cont<V_BLANK)); //当行计数器小于行空白总长或场计数器小于场空白总长时,空白信号低电平
assign VGA_CLK = ~CLK_to_DAC; //VGA时钟等于CLK_25取反
assign CLK_to_DAC = CLK_25;
always@(posedge CLK_to_DAC)
begin
if(H_Cont<H_TOTAL) //如果行计数器小于行总时长
H_Cont<=H_Cont+1'b1; //行计数器+1
else H_Cont<=0; //否则行计数器清零
if(H_Cont==H_FRONT-1) //如果行计数器等于行前沿空白时间-1
VGA_HS<=1'b0; //行同步信号置0
if(H_Cont==H_FRONT+H_SYNC-1) //如果行计数器等于行前沿+行同步-1
VGA_HS<=1'b1; //行同步信号置1
if(H_Cont>=H_BLANK) //如果行计数器大于等于行空白总时长
X<=H_Cont-H_BLANK; //X等于行计数器-行空白总时长 (X为当前行第几个像素点)
else X<=0; //否则X为0
end
always@(posedge VGA_HS)
begin
if(V_Cont<V_TOTAL) //如果场计数器小于行总时长
V_Cont<=V_Cont+1'b1; //场计数器+1
else V_Cont<=0; //否则场计数器清零
if(V_Cont==V_FRONT-1) //如果场计数器等于场前沿空白时间-1
VGA_VS<=1'b0; //场同步信号置0
if(V_Cont==V_FRONT+V_SYNC-1) //如果场计数器等于行前沿+场同步-1
VGA_VS<=1'b1; //场同步信号置1
if(V_Cont>=V_BLANK) //如果场计数器大于等于场空白总时长
Y<=V_Cont-V_BLANK; //Y等于场计数器-场空白总时长 (Y为当前场第几行)
else Y<=0; //否则Y为0
end
reg valid_yr;
always@(posedge CLK_to_DAC)
if(V_Cont == 10'd32) //场计数器=32时
valid_yr<=1'b1; //行输入激活
else if(V_Cont==10'd512) //场计数器=512时
valid_yr<=1'b0; //行输入冻结
wire valid_y=valid_yr; //连线
reg valid_r;
always@(posedge CLK_to_DAC)
if((H_Cont == 10'd32)&&valid_y) //行计数器=32时
valid_r<=1'b1; //像素输入激活
else if((H_Cont==10'd512)&&valid_y) //行计数器=512时
valid_r<=1'b0; //像素输入冻结
wire valid = valid_r; //连线
wire[10:0] x_dis; //像素显示控制信号
wire[10:0] y_dis; //行显示控制信号
assign x_dis=X; //连线X
assign y_dis=Y; //连线Y
parameter
char_line00=240'h00000000000000000000000010401020,
char_line01=240'h00000000000000000000000010401028,
char_line02=240'h00000000000000000000000020A01E24,
char_line03=240'h183C0838187E1818183C3C1841102220,
char_line04=240'h244238442442242424424224920833FE,
char_line05=240'h40420842420442404242424015F64A20,
char_line06=240'h4002084242044240420242402040A450,
char_line07=240'h5C0408424208425C4204025C60401450,
char_line08=240'h621808464208426242180462A7FC0888,
char_line09=240'h4204083A421042424204084220401088,
char_line0a=240'h42020802421042424202104222502104,
char_line0b=240'h42420802421042424242204222484202,
char_line0c=240'h22420824241024222442422224440000,
char_line0d=240'h1C3C3E181810181C183C7E1C28444888,
char_line0e=240'h00000000000000000000000021404444,
char_line0f=240'h00000000000000000000000020808444;
reg[7:0] char_bit;
always@(posedge CLK_to_DAC)
if(X==10'd180)char_bit<=9'd240; //当显示到144像素时准备开始输出图像数据
else if(X>10'd180&&X<10'd420) //左边距屏幕144像素到416像素时 416=144+272(图像宽度)
char_bit<=char_bit-1'b1; //倒着输出图像信息
reg[29:0] vga_rgb; //定义颜色缓存
always@(posedge CLK_to_DAC)
if(X>10'd180&&X<10'd420) //X控制图像的横向显示边界:左边距屏幕左边144像素 右边界距屏幕左边界416像素
begin case(Y) //Y控制图像的纵向显示边界:从距离屏幕顶部160像素开始显示第一行数据
10'd200:
if(char_line00[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000; //如果该行有数据 则颜色为红色
else vga_rgb<=30'b0000000000_0000000000_0000000000; //否则为黑色
10'd201:
if(char_line01[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd202:
if(char_line02[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd203:
if(char_line03[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd204:
if(char_line04[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd205:
if(char_line05[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd206:
if(char_line06[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd207:
if(char_line07[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd208:
if(char_line08[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd209:
if(char_line09[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd210:
if(char_line0a[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd211:
if(char_line0b[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd212:
if(char_line0c[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd213:
if(char_line0d[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd214:
if(char_line0e[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd215:
if(char_line0f[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
default:vga_rgb<=30'h0000000000; //默认颜色黑色
endcase
end
else vga_rgb<=30'h000000000; //否则黑色
assign VGA_R=vga_rgb[23:16];
assign VGA_G=vga_rgb[15:8];
assign VGA_B=vga_rgb[7:0];
endmodule
VGA显示模块中的ROM是通过例化IP核来实现的只读存储器,它使用FPGA的片上存储资源。由于FPGA的片上存储资源有限,所以ROM中存储的图片大小也受到限制。由于DE2-115开发板上的VGA接口采用RGB565数据格式,即每个像素点的颜色用16bit的数据来表示,因此大小为100100的图片占用的存储空间为100100*16bit=160000bit=156.25Kbit(1Kbit=1024bit)。而开拓者开发板上的FPGA片上存储资源为414Kbit,能够满足实验任务中的图片存储需求。
ROM作为只读存储器,在调用IP核时需要指定初始化文件,在这里就是写入存储器中的图片数据,各种格式的图片(bmp、jpg等)都是以MIF文件的形式导入到ROM中的。MIF是一种Quartus工具能识别的文件格式,在文件的开头定义了存储器的位宽和深度、地址格式、数据格式等信息,紧接着列出了存储单元地址以及写入各地址的数据。例如,一个位宽为16,深度为5的MIF文件内容如下图所示:
当需要存储的数据量较小时,如果我们知道数据的内容,那么就可以仿照图 21.4.2的格式手动编写MIF文件。但是由于图片的数据量较大,并且我们无法直接看出各个像素点对应的颜色数据,因此需要借助工具来实现图片到MIF文件的转换。在这里我们使用正点原子提供的工具“PicToMif”来实现这一转换过程。
我们在Windows自带的“画图”工具中将图片大小调整100100,并利用工具PicToMif转换得到MIF文件。
双击运行 “PicToMif.exe” ,点击“加载图片”并在弹出的界面中选择需要转换的图片
(注意:待转换图片分辨率的大小必须是100100),图片加载成功后工具会在图片属性中指示出图片的文件名和大小;接下来选择图片转换的数据格式为RGB565;最后点击“一键转换”按钮,在弹出的界面中选择MIF文件的存放路径并输入文件名。PicToMif转换过程中的软件界面如图 所示
最终转换得到的MIF文件部分截图如下所示:
参考:【FPGA实验】基于DE2-115平台的VGA显示