目录
4.1 神经元
4.1.1 净活性值
4.1.2 激活函数
4.1.2.1 Sigmoid型函数
4.1.2.2 ReLU型函数
4.2 基于前馈神经网络的二分类任务
4.2.1 数据集构建
4.2.2 模型构建
4.2.2.1 线性层算子
4.2.2.2 Logistic算子
4.2.2.3 层的串行组合
4.2.3 损失函数
4.2.4 模型优化
4.2.4.1 反向传播算法
4.2.4.2 损失函数
4.2.4.3 Logistic算子
4.2.4.4 线性层
4.2.4.5 整个网络
4.2.4.6 优化器
4.2.5 完善Runner类:RunnerV2_1
4.2.6 模型训练
4.2.7 性能评价
【思考题】
【心得体会】
【参考文献】
神经网络是由神经元按照一定的连接结构组合而成的网络。神经网络可以看作一个函数,通过简单非线性函数的多次复合,实现输入空间到输出空间的复杂映射 。
前馈神经网络是最早发明的简单人工神经网络。整个网络中的信息单向传播,可以用一个有向无环路图表示,这种网络结构简单,易于实现。
神经网络的基本组成单元为带有非线性激活函数的神经元,其结构如如图4.2所示。神经元是对生物神经元的结构和特性的一种简化建模,接收一组输入信号并产生输出。
假设一个神经元接收到的输入为,其权重向量为,神经元所获得的输入信号,即净活性值的计算方法为
其中b为偏置。
为了提高预测样本的效率,我们通常会将个样本归为一组进行成批地预测。
其中 为个样本的特征矩阵,为个预测值组成的列向量。
实验代码:
import torch
# 2个特征数为5的样本
X = torch.rand(size=[2, 5])
# 含有5个参数的权重向量
w = torch.rand(size=[5, 1])
# 偏置项
b = torch.rand(size=[1, 1])
# 使用'torch.matmul'实现矩阵相乘
z = torch.matmul(X, w) + b
print("input X:", X)
print("weight w:", w, "\nbias b:", b)
print("output z:", z)
结果
input X: tensor([[9.7440e-02, 9.4148e-01, 5.3517e-01, 4.5481e-01, 6.1709e-01],
[9.1305e-01, 1.3959e-04, 5.7865e-01, 4.7598e-01, 7.6507e-01]])
weight w: tensor([[0.9788],
[0.3119],
[0.7168],
[0.0538],
[0.5996]])
bias b: tensor([[0.9996]])
output z: tensor([[2.1667],
[2.7925]])
在pytorch中学习相应函数torch.nn.Linear(features_in, features_out, bias=False)。
实现上面的例子,完成代码,进一步深入研究torch.nn.Linear()的使用。
torch.nn.Linear()函数实现:
import torch
import torch.nn as nn
from torch.autograd import Variable
m = nn.Linear(5, 1)
input = Variable(torch.rand(2, 5)) #包装Tensor使得支持自动微分
output = m(input)
print(output)
结果
tensor([[0.3001],
[0.5731]], grad_fn=)
【思考题】加权相加与仿射变换之间有什么区别和联系?
加权相加:
1.变换前是直线的,变换后依然是直线
2.直线的比例保持不变
3.变换前后原点不变
仿射变换:
变换前是直线的,变换后依然是直线,且直线的比例保持不变
净活性值再经过一个非线性函数后,得到神经元的活性值。
激活函数通常为非线性函数,可以增强神经网络的表示能力和学习能力。常用的激活函数有S型函数和ReLU函数。
Sigmoid 型函数是指一类S型曲线函数,为两端饱和函数。常用的 Sigmoid 型函数有 Logistic 函数和 Tanh 函数,其数学表达式为
Logistic函数:
Tanh函数:
Logistic函数和Tanh函数的代码实现和可视化如下
常见的ReLU函数有ReLU和带泄露的ReLU(Leaky ReLU),数学表达式分别为:
其中λ为超参数。
可视化ReLU和带泄露的ReLU的函数的代码实现和可视化如下:
# ReLU
def relu(z):
return torch.maximum(z, torch.as_tensor(0.))
# 带泄露的ReLU
def leaky_relu(z, negative_slope=0.1):
# 当前版本torch暂不支持直接将bool类型转成int类型,因此调用了torch的cast函数来进行显式转换
a1 = (torch.can_cast((z > 0).dtype, torch.float32) * z)
a2 = (torch.can_cast((z <= 0).dtype, torch.float32) * (negative_slope * z))
return a1 + a2
# 在[-10,10]的范围内生成一系列的输入值,用于绘制relu、leaky_relu的函数曲线
z = torch.linspace(-10, 10, 10000)
plt.figure()
plt.plot(z.tolist(), relu(z).tolist(), color="#e4007f", label="ReLU Function")
plt.plot(z.tolist(), leaky_relu(z).tolist(), color="#f19ec2", linestyle="--", label="LeakyReLU Function")
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='upper left', fontsize='large')
plt.savefig('fw-relu-leakyrelu.pdf')
plt.show()
输出
在飞桨中,可以通过调用paddle.nn.functional.relu
和paddle.nn.functional.leaky_relu
完成ReLU与带泄露的ReLU的计算。在pytorch中找到相应函数并测试。
# 在[-10,10]的范围内生成一系列的输入值,用于绘制relu、leaky_relu的函数曲线
z = torch.linspace(-10, 10, 10000)
plt.figure()
plt.plot(z.tolist(), torch.relu(z).tolist(), color="#e4007f", label="ReLU Function")
plt.plot(z.tolist(), torch.nn.LeakyReLU(0.1)(z), color="#f19ec2", linestyle="--", label="LeakyReLU Function")
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='upper left', fontsize='large')
plt.savefig('fw-relu-leakyrelu.pdf')
plt.show()
结果
前馈神经网络的网络结构如下图所示。每一层获取前一层神经元的活性值,并重复上述计算得到该层的活性值,传入到下一层。整个网络中无反馈,信号从输入层向输出层逐层的单向传播,得到网络最后的输出
这里,我们使用第3.1.1节中构建的二分类数据集:Moon1000数据集,其中训练集640条、验证集160条、测试集200条。
该数据集的数据是从两个带噪音的弯月形状数据分布中采样得到,每个样本包含2个特征。
from nndl.dataset import make_moons
# 采样1000个样本
n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.15)
num_train = 640
num_dev = 160
num_test = 200
X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]
y_train = y_train.reshape([-1,1])
y_dev = y_dev.reshape([-1,1])
y_test = y_test.reshape([-1,1])
其中nndl.dataset.make_moons
# 新增make_moons函数
def make_moons(n_samples=1000, shuffle=True, noise=None):
n_samples_out = n_samples // 2
n_samples_in = n_samples - n_samples_out
outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))
inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))
print('outer_circ_x.shape:', outer_circ_x.shape, 'outer_circ_y.shape:', outer_circ_y.shape)
print('inner_circ_x.shape:', inner_circ_x.shape, 'inner_circ_y.shape:', inner_circ_y.shape)
X = torch.stack(
[torch.cat([outer_circ_x, inner_circ_x]),
torch.cat([outer_circ_y, inner_circ_y])],
axis=1
)
print('after concat shape:', torch.cat([outer_circ_x, inner_circ_x]).shape)
print('X shape:', X.shape)
# 使用'torch. zeros'将第一类数据的标签全部设置为0
# 使用'torch. ones'将第一类数据的标签全部设置为1
y = torch.cat(
[torch.zeros([n_samples_out]), torch.ones([n_samples_in])]
)
print('y shape:', y.shape)
# 如果shuffle为True,将所有数据打乱
if shuffle:
# 使用'torch.randperm'生成一个数值在0到X.shape[0],随机排列的一维Tensor做索引值,用于打乱数据
idx = torch.randperm(X.shape[0])
X = X[idx]
y = y[idx]
# 如果noise不为None,则给特征值加入噪声
if noise is not None:
X += np.random.normal(0.0, noise, X.shape)
return X, y
结果
outer_circ_x.shape: torch.Size([500]) outer_circ_y.shape: torch.Size([500])
inner_circ_x.shape: torch.Size([500]) inner_circ_y.shape: torch.Size([500])
after concat shape: torch.Size([1000])
X shape: torch.Size([1000, 2])
y shape: torch.Size([1000])
公式(4.8)对应一个线性层算子,权重参数采用默认的随机初始化,偏置采用默认的零初始化。代码实现如下:
from nndl.op import Op
# 实现线性层算子
class Linear(Op):
def __init__(self, input_size, output_size, name, weight_init=np.random.standard_normal, bias_init=torch.zeros):
self.params = {}
# 初始化权重
self.params['W'] = weight_init([input_size, output_size])
self.params['W'] = torch.as_tensor(self.params['W'],dtype=torch.float32)
# 初始化偏置
self.params['b'] = bias_init([1, output_size])
self.inputs = None
self.name = name
def forward(self, inputs):
self.inputs = inputs
outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
return outputs
class Logistic(Op):
def __init__(self):
self.inputs = None
self.outputs = None
def forward(self, inputs):
outputs = 1.0 / (1.0 + torch.exp(-inputs))
self.outputs = outputs
return outputs
在定义了神经层的线性层算子和激活函数算子之后,我们可以不断交叉重复使用它们来构建一个多层的神经网络。
下面我们实现一个两层的用于二分类任务的前馈神经网络,选用Logistic作为激活函数,可以利用上面实现的线性层和激活函数算子来组装。代码实现如下:
# 实现一个两层前馈神经网络
class Model_MLP_L2(Op):
def __init__(self, input_size, hidden_size, output_size):
self.fc1 = Linear(input_size, hidden_size, name="fc1")
self.act_fn1 = Logistic()
self.fc2 = Linear(hidden_size, output_size, name="fc2")
self.act_fn2 = Logistic()
def __call__(self, X):
return self.forward(X)
def forward(self, X):
z1 = self.fc1(X)
a1 = self.act_fn1(z1)
z2 = self.fc2(a1)
a2 = self.act_fn2(z2)
return a2
测试实例化一个两层的前馈网络,令其输入层维度为5,隐藏层维度为10,输出层维度为1。
并随机生成一条长度为5的数据输入两层神经网络,观察输出结果。
# 实例化模型
model = Model_MLP_L2(input_size=5, hidden_size=10, output_size=1)
# 随机生成1条长度为5的数据
X = torch.rand([1, 5])
result = model(X)
print ("result: ", result)
结果
result: tensor([[0.6000]])
# 实现交叉熵损失函数
class BinaryCrossEntropyLoss(op.Op):
def __init__(self):
self.predicts = None
self.labels = None
self.num = None
def __call__(self, predicts, labels):
return self.forward(predicts, labels)
def forward(self, predicts, labels):
self.predicts = predicts
self.labels = labels
self.num = self.predicts.shape[0]
loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts)) + torch.matmul((1-self.labels.t()), torch.log(1-self.predicts)))
loss = torch.squeeze(loss, axis=1)
return loss
神经网络的参数主要是通过梯度下降法进行优化的,因此需要计算最终损失对每个参数的梯度。
由于神经网络的层数通常比较深,其梯度计算和上一章中的线性分类模型的不同的点在于:线性模型通常比较简单可以直接计算梯度,而神经网络相当于一个复合函数,需要利用链式法则进行反向传播来计算梯度。
# 实现交叉熵损失函数
class BinaryCrossEntropyLoss(Op):
def __init__(self, model):
self.predicts = None
self.labels = None
self.num = None
self.model = model
def __call__(self, predicts, labels):
return self.forward(predicts, labels)
def forward(self, predicts, labels):
self.predicts = predicts
self.labels = labels
self.num = self.predicts.shape[0]
loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts))
+ torch.matmul((1 - self.labels.t()), torch.log(1 - self.predicts)))
loss = torch.squeeze(loss, axis=1)
return loss
def backward(self):
# 计算损失函数对模型预测的导数
loss_grad_predicts = -1.0 * (self.labels / self.predicts -
(1 - self.labels) / (1 - self.predicts)) / self.num
# 梯度反向传播
self.model.backward(loss_grad_predicts)
class Logistic(Op):
def __init__(self):
self.inputs = None
self.outputs = None
self.params = None
def forward(self, inputs):
outputs = 1.0 / (1.0 + torch.exp(-inputs))
self.outputs = outputs
return outputs
def backward(self, grads):
# 计算Logistic激活函数对输入的导数
outputs_grad_inputs = torch.multiply(self.outputs, (1.0 - self.outputs))
return torch.multiply(grads,outputs_grad_inputs)
class Linear(Op):
def __init__(self, input_size, output_size, name, weight_init=np.random.standard_normal, bias_init=torch.zeros):
self.params = {}
self.params['W'] = weight_init([input_size, output_size])
self.params['W'] = torch.as_tensor(self.params['W'],dtype=torch.float32)
self.params['b'] = bias_init([1, output_size])
self.inputs = None
self.grads = {}
self.name = name
def forward(self, inputs):
self.inputs = inputs
outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
return outputs
def backward(self, grads):
self.grads['W'] = torch.matmul(self.inputs.T, grads)
self.grads['b'] = torch.sum(grads, dim=0)
# 线性层输入的梯度
return torch.matmul(grads, self.params['W'].T)
实现完整的两层神经网络的前向和反向计算。代码实现如下:
class Model_MLP_L2(Op):
def __init__(self, input_size, hidden_size, output_size):
# 线性层
self.fc1 = Linear(input_size, hidden_size, name="fc1")
# Logistic激活函数层
self.act_fn1 = Logistic()
self.fc2 = Linear(hidden_size, output_size, name="fc2")
self.act_fn2 = Logistic()
self.layers = [self.fc1, self.act_fn1, self.fc2, self.act_fn2]
def __call__(self, X):
return self.forward(X)
# 前向计算
def forward(self, X):
z1 = self.fc1(X)
a1 = self.act_fn1(z1)
z2 = self.fc2(a1)
a2 = self.act_fn2(z2)
return a2
# 反向计算
def backward(self, loss_grad_a2):
loss_grad_z2 = self.act_fn2.backward(loss_grad_a2)
loss_grad_a1 = self.fc2.backward(loss_grad_z2)
loss_grad_z1 = self.act_fn1.backward(loss_grad_a1)
loss_grad_inputs = self.fc1.backward(loss_grad_z1)
在计算好神经网络参数的梯度之后,我们将梯度下降法中参数的更新过程实现在优化器中。
与第3章中实现的梯度下降优化器SimpleBatchGD
不同的是,此处的优化器需要遍历每层,对每层的参数分别做更新。
from abc import abstractmethod
#新增优化器基类
class Optimizer(object):
def __init__(self, init_lr, model):
#初始化学习率,用于参数更新的计算
self.init_lr = init_lr
#指定优化器需要优化的模型
self.model = model
@abstractmethod
def step(self):
pass
class BatchGD(Optimizer):
def __init__(self, init_lr, model):
super(BatchGD, self).__init__(init_lr=init_lr, model=model)
def step(self):
# 参数更新
for layer in self.model.layers: # 遍历所有层
if isinstance(layer.params, dict):
for key in layer.params.keys():
layer.params[key] = layer.params[key] - self.init_lr * layer.grads[key]
class RunnerV2_1(object):
def __init__(self, model, optimizer, metric, loss_fn, **kwargs):
self.model = model
self.optimizer = optimizer
self.loss_fn = loss_fn
self.metric = metric
# 记录训练过程中的评估指标变化情况
self.train_scores = []
self.dev_scores = []
# 记录训练过程中的评价指标变化情况
self.train_loss = []
self.dev_loss = []
def train(self, train_set, dev_set, **kwargs):
# 传入训练轮数,如果没有传入值则默认为0
num_epochs = kwargs.get("num_epochs", 0)
# 传入log打印频率,如果没有传入值则默认为100
log_epochs = kwargs.get("log_epochs", 100)
# 传入模型保存路径
save_dir = kwargs.get("save_dir", None)
# 记录全局最优指标
best_score = 0
# 进行num_epochs轮训练
for epoch in range(num_epochs):
X, y = train_set
# 获取模型预测
logits = self.model(X)
# 计算交叉熵损失
trn_loss = self.loss_fn(logits, y) # return a tensor
self.train_loss.append(trn_loss.item())
# 计算评估指标
trn_score = self.metric(logits, y).item()
self.train_scores.append(trn_score)
self.loss_fn.backward()
# 参数更新
self.optimizer.step()
dev_score, dev_loss = self.evaluate(dev_set)
# 如果当前指标为最优指标,保存该模型
if dev_score > best_score:
print(f"[Evaluate] best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
best_score = dev_score
if save_dir:
self.save_model(save_dir)
if log_epochs and epoch % log_epochs == 0:
print(f"[Train] epoch: {epoch}/{num_epochs}, loss: {trn_loss.item()}")
def evaluate(self, data_set):
X, y = data_set
# 计算模型输出
logits = self.model(X)
# 计算损失函数
loss = self.loss_fn(logits, y).item()
self.dev_loss.append(loss)
# 计算评估指标
score = self.metric(logits, y).item()
self.dev_scores.append(score)
return score, loss
def predict(self, X):
return self.model(X)
def save_model(self, save_dir):
# 对模型每层参数分别进行保存,保存文件名称与该层名称相同
for layer in self.model.layers: # 遍历所有层
if isinstance(layer.params, dict):
torch.save(layer.params, os.path.join(save_dir, layer.name+".pdparams"))
def load_model(self, model_dir):
# 获取所有层参数名称和保存路径之间的对应关系
model_file_names = os.listdir(model_dir)
name_file_dict = {}
for file_name in model_file_names:
name = file_name.replace(".pdparams", "")
name_file_dict[name] = os.path.join(model_dir, file_name)
# 加载每层参数
for layer in self.model.layers: # 遍历所有层
if isinstance(layer.params, dict):
name = layer.name
file_path = name_file_dict[name]
layer.params = torch.load(file_path)
epoch_num = 1000
model_saved_dir = 'your route'
# 输入层维度为2
input_size = 2
# 隐藏层维度为5
hidden_size = 5
# 输出层维度为1
output_size = 1
# 定义网络
model = Model_MLP_L2(input_size=input_size, hidden_size=hidden_size, output_size=output_size)
# 损失函数
loss_fn = BinaryCrossEntropyLoss(model)
# 优化器
learning_rate = 0.2
optimizer = BatchGD(learning_rate, model)
# 评价方法
metric = accuracy
# 实例化RunnerV2_1类,并传入训练配置
runner = RunnerV2_1(model, optimizer, metric, loss_fn)
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=epoch_num, log_epochs=50, save_dir=model_saved_dir)
结果
[ Train ] epoch :550/1000, loss :0.42972318658828735
[ Train ] epoch :600/1000, loss :0.42925387620925903
[ Train ] epoch :650/1000, loss :0.4289710521697998
[ Train ] epoch :700/1000, loss :0.4287392199039459
[ Train ] epoch :750/1000, loss :0.42853887889053345
[ Train ] epoch :800/1000, loss :0.42835894227027893
[ Train ] epoch :850/1000, loss :0.4281933903694153
[ Train ] epoch :900/1000, loss :0.4280383288860321
[ Train ] epoch :950/1000, loss :0.4278915524482727
[ Evaluate ] best accuracy performence has been updated :0.00000-->0.78750
[ Train ] epoch :0/1000, loss :0.6602428151535034
[ Evalvate ] best accuracy performence has been updated :0.78750->0.82500
[ Evaluate ] best accuracy performence has been updated :0.82500-->0.83125
[ Evaluate ] best acCuracy performence has been updated :0.82125-->0.84375
可视化观察训练集与验证集的损失函数变化情况。
# 打印训练集和验证集的损失
plt.figure()
plt.plot(range(epoch_num), runner.train_loss, color="red", label="Train loss")
plt.plot(range(epoch_num), runner.dev_loss, color="blue", linestyle='--', label="Dev loss")
plt.xlabel("epoch", fontsize='large')
plt.ylabel("loss", fontsize='large')
plt.legend(fontsize='x-large')
plt.savefig('loss.pdf')
plt.show()
#加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])
使用测试集对训练中的最优模型进行评价,观察模型的评价指标。
# 加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))
结果
[Test] score/loss :0.8125/0.4123
可视化
import math
# 均匀生成40000个数据点
x1, x2 = torch.meshgrid(torch.linspace(-math.pi, math.pi, 200), torch.linspace(-math.pi, math.pi, 200))
x = torch.stack([torch.flatten(x1), torch.flatten(x2)], axis=1)
# 预测对应类别
y = runner.predict(x)
# y = torch.squeeze(torch.as_tensor(torch.can_cast((y>=0.5).dtype,torch.float32)))
# 绘制类别区域
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(x[:,0].tolist(), x[:,1].tolist(), c=y.tolist(), cmap=plt.cm.Spectral)
plt.scatter(X_train[:, 0].tolist(), X_train[:, 1].tolist(), marker='*', c=torch.squeeze(y_train,axis=-1).tolist())
plt.scatter(X_dev[:, 0].tolist(), X_dev[:, 1].tolist(), marker='*', c=torch.squeeze(y_dev,axis=-1).tolist())
plt.scatter(X_test[:, 0].tolist(), X_test[:, 1].tolist(), marker='*', c=torch.squeeze(y_test,axis=-1).tolist())
plt.show()
结果
减低噪声至0.15时。
3.1 基于Logistic回归的二分类任务 4.2 基于前馈神经网络的二分类任务,谈谈自己的看法。
Logistic回归二分类任务与前馈神经网络二分类任务的差别不大,Logistic回归并不能做一些较为复杂、输出层多的任务,而前馈神经网络可以做这些复杂的任务。Logistic回归是线性模型而前馈神经网络属于非线性模型,前馈神经网络Logistic回归的适用场景不同,前馈神经网络用武之地更加多一些吧。
本次实验是前馈神经网络的二分类任务,通过构建两层前馈神经网络来训练测试集。通过降低噪声来得到正确的实验结果,拟合的效果更加理想,感谢那几位同学发现问题!总之革命尚未成功,同志仍需努力!!!!
NNDL 实验4(上)
NNDL 实验4(下)
NNDL 实验五 前馈神经网络(1)二分类任务-HBU_David
仿射变换