数字图像处理c++ opencv(VS2019 opencv4.53)持续更新
在统计学与概率论中,高斯函数是正态分布(高斯分布)的密度函数。一维高斯表达式如下:
其中,其中a、b与 c为实数常数,且a > 0.
a表示得到曲线的高度;
b(μ)是指曲线在x轴的中心;
c(σ)指width(与半峰全宽有关);
二维高斯表达式:
高斯函数在空间域和频率域常作为低通滤波器核。
代码如下(示例):
#include
#include
#include"Salt.h"
using namespace cv;
using namespace std;
//定义高斯滤波函数
void myfilter(int filter_size, Mat& image_input, Mat& image_output);
int main()
{
Mat image, image_gray, image_output, image_output2; //定义输入图像,灰度图像,输出图像
image = imread("lena.png"); //读取图像;
if (image.empty())
{
cout << "读取错误" << endl;
return -1;
}
imshow("image", image);
cvtColor(image, image_gray, COLOR_BGR2GRAY);
Salt(image_gray, 1000); //添加噪声
imshow("image_gray", image_gray);
//opencv自带高斯滤波函数
int a = 7;
GaussianBlur(image_gray, image_output, Size(a, a), 2, 2);
imshow("image_output", image_output);
//自编函数
myfilter(a, image_gray, image_output2);
imshow("image_output2", image_output2);
waitKey(0); //暂停,保持图像显示,等待按键结束
return 0;
}
void myfilter(int filter_size, Mat& image_input, Mat& image_output) //图像边缘未处理
{
image_output = image_input.clone();
int k = (filter_size - 1) / 2;
for (int i = k; i < (image_input.rows-k); i++)
{
for (int j = k; j < (image_input.cols - k); j++)
{
double sum = 0.0;
double sum1 = 0.0;
double sigma = 7; //可调
double g;
for (int m = -k; m < k + 1; m++)
{
for (int n = -k; n < k + 1; n++)
{
g = exp(-(m * m + n * n) / (2 * sigma * sigma));
sum = sum + g*image_input.at<uchar>(i + m, j + n);
sum1 = sum1 + g;
}
}
image_output.at<uchar>(i, j) = (int)round(sum / sum1);
}
}
}
噪声程序.h文件
#pragma once
#include
#include
#include
using namespace cv;
using namespace std;
void Salt(Mat image, int n);
噪声程序.cpp文件
#include "Salt.h"
void Salt(Mat image, int n)
{
default_random_engine generater;
uniform_int_distribution<int>randomRow(0, image.rows - 1);
uniform_int_distribution<int>randomCol(0, image.cols - 1);
int i, j;
for (int k = 0; k < n; k++)
{
i = randomCol(generater);
j = randomRow(generater);
if (image.channels() == 1)
{
image.at<uchar>(j, i) = 255;
}
else if (image.channels() == 3)
{
image.at<Vec3b>(j, i)[0] = 255;
image.at<Vec3b>(j, i)[1] = 255;
image.at<Vec3b>(j, i)[2] = 255;
}
}
}