视觉SLAM十四讲CH8代码解析及课后习题详解

第一版的代码:

direct_semidense.cpp

#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;
using namespace g2o;

/********************************************
 * 本节演示了RGBD上的半稠密直接法 
 ********************************************/

// 一次测量的值,包括一个世界坐标系下三维点与一个灰度值
struct Measurement
{
    Measurement ( Eigen::Vector3d p, float g ) : pos_world ( p ), grayscale ( g ) {}
    Eigen::Vector3d pos_world;
    float grayscale;
};

inline Eigen::Vector3d project2Dto3D ( int x, int y, int d, float fx, float fy, float cx, float cy, float scale )
{
    float zz = float ( d ) /scale;
    float xx = zz* ( x-cx ) /fx;
    float yy = zz* ( y-cy ) /fy;
    return Eigen::Vector3d ( xx, yy, zz );
}

inline Eigen::Vector2d project3Dto2D ( float x, float y, float z, float fx, float fy, float cx, float cy )
{
    float u = fx*x/z+cx;
    float v = fy*y/z+cy;
    return Eigen::Vector2d ( u,v );
}

// 直接法估计位姿
// 输入:测量值(空间点的灰度),新的灰度图,相机内参; 输出:相机位姿
// 返回:true为成功,false失败
bool poseEstimationDirect ( const vector& measurements, cv::Mat* gray, Eigen::Matrix3f& intrinsics, Eigen::Isometry3d& Tcw );


// project a 3d point into an image plane, the error is photometric error
// an unary edge with one vertex SE3Expmap (the pose of camera)
class EdgeSE3ProjectDirect: public BaseUnaryEdge< 1, double, VertexSE3Expmap>
{
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW

    EdgeSE3ProjectDirect() {}

    EdgeSE3ProjectDirect ( Eigen::Vector3d point, float fx, float fy, float cx, float cy, cv::Mat* image )
        : x_world_ ( point ), fx_ ( fx ), fy_ ( fy ), cx_ ( cx ), cy_ ( cy ), image_ ( image )
    {}

    virtual void computeError()
    {
        const VertexSE3Expmap* v  =static_cast ( _vertices[0] );
        Eigen::Vector3d x_local = v->estimate().map ( x_world_ );
        float x = x_local[0]*fx_/x_local[2] + cx_;
        float y = x_local[1]*fy_/x_local[2] + cy_;
        // check x,y is in the image
        if ( x-4<0 || ( x+4 ) >image_->cols || ( y-4 ) <0 || ( y+4 ) >image_->rows )
        {
            _error ( 0,0 ) = 0.0;
            this->setLevel ( 1 );
        }
        else
        {
            _error ( 0,0 ) = getPixelValue ( x,y ) - _measurement;
        }
    }

    // plus in manifold
    virtual void linearizeOplus( )
    {
        if ( level() == 1 )
        {
            _jacobianOplusXi = Eigen::Matrix::Zero();
            return;
        }
        VertexSE3Expmap* vtx = static_cast ( _vertices[0] );
        Eigen::Vector3d xyz_trans = vtx->estimate().map ( x_world_ );   // q in book

        double x = xyz_trans[0];
        double y = xyz_trans[1];
        double invz = 1.0/xyz_trans[2];
        double invz_2 = invz*invz;

        float u = x*fx_*invz + cx_;
        float v = y*fy_*invz + cy_;

        // jacobian from se3 to u,v
        // NOTE that in g2o the Lie algebra is (\omega, \epsilon), where \omega is so(3) and \epsilon the translation
        Eigen::Matrix jacobian_uv_ksai;

        jacobian_uv_ksai ( 0,0 ) = - x*y*invz_2 *fx_;
        jacobian_uv_ksai ( 0,1 ) = ( 1+ ( x*x*invz_2 ) ) *fx_;
        jacobian_uv_ksai ( 0,2 ) = - y*invz *fx_;
        jacobian_uv_ksai ( 0,3 ) = invz *fx_;
        jacobian_uv_ksai ( 0,4 ) = 0;
        jacobian_uv_ksai ( 0,5 ) = -x*invz_2 *fx_;

        jacobian_uv_ksai ( 1,0 ) = - ( 1+y*y*invz_2 ) *fy_;
        jacobian_uv_ksai ( 1,1 ) = x*y*invz_2 *fy_;
        jacobian_uv_ksai ( 1,2 ) = x*invz *fy_;
        jacobian_uv_ksai ( 1,3 ) = 0;
        jacobian_uv_ksai ( 1,4 ) = invz *fy_;
        jacobian_uv_ksai ( 1,5 ) = -y*invz_2 *fy_;

        Eigen::Matrix jacobian_pixel_uv;

        jacobian_pixel_uv ( 0,0 ) = ( getPixelValue ( u+1,v )-getPixelValue ( u-1,v ) ) /2;
        jacobian_pixel_uv ( 0,1 ) = ( getPixelValue ( u,v+1 )-getPixelValue ( u,v-1 ) ) /2;

        _jacobianOplusXi = jacobian_pixel_uv*jacobian_uv_ksai;
    }

    // dummy read and write functions because we don't care...
    virtual bool read ( std::istream& in ) {}
    virtual bool write ( std::ostream& out ) const {}

protected:
    // get a gray scale value from reference image (bilinear interpolated)
    inline float getPixelValue ( float x, float y )
    {
        uchar* data = & image_->data[ int ( y ) * image_->step + int ( x ) ];
        float xx = x - floor ( x );
        float yy = y - floor ( y );
        return float (
                   ( 1-xx ) * ( 1-yy ) * data[0] +
                   xx* ( 1-yy ) * data[1] +
                   ( 1-xx ) *yy*data[ image_->step ] +
                   xx*yy*data[image_->step+1]
               );
    }
public:
    Eigen::Vector3d x_world_;   // 3D point in world frame
    float cx_=0, cy_=0, fx_=0, fy_=0; // Camera intrinsics
    cv::Mat* image_=nullptr;    // reference image
};

int main ( int argc, char** argv )
{
    if ( argc != 2 )
    {
        cout<<"usage: useLK path_to_dataset"< measurements;
    // 相机内参
    float cx = 325.5;
    float cy = 253.5;
    float fx = 518.0;
    float fy = 519.0;
    float depth_scale = 1000.0;
    Eigen::Matrix3f K;
    K<>time_rgb>>rgb_file>>time_depth>>depth_file;
        color = cv::imread ( path_to_dataset+"/"+rgb_file );
        depth = cv::imread ( path_to_dataset+"/"+depth_file, -1 );
        if ( color.data==nullptr || depth.data==nullptr )
            continue; 
        cv::cvtColor ( color, gray, cv::COLOR_BGR2GRAY );
        if ( index ==0 )
        {
            // select the pixels with high gradiants 
            for ( int x=10; x(y)[x+1] - gray.ptr(y)[x-1], 
                        gray.ptr(y+1)[x] - gray.ptr(y-1)[x]
                    );
                    if ( delta.norm() < 50 )
                        continue;
                    ushort d = depth.ptr (y)[x];
                    if ( d==0 )
                        continue;
                    Eigen::Vector3d p3d = project2Dto3D ( x, y, d, fx, fy, cx, cy, depth_scale );
                    float grayscale = float ( gray.ptr (y) [x] );
                    measurements.push_back ( Measurement ( p3d, grayscale ) );
                }
            prev_color = color.clone();
            cout<<"add total "< time_used = chrono::duration_cast> ( t2-t1 );
        cout<<"direct method costs time: "<& measurements, cv::Mat* gray, Eigen::Matrix3f& K, Eigen::Isometry3d& Tcw )
{
    // 初始化g2o
    typedef g2o::BlockSolver> DirectBlock;  // 求解的向量是6*1的
    //DirectBlock::LinearSolverType* linearSolver = new g2o::LinearSolverDense< DirectBlock::PoseMatrixType > ();
    //DirectBlock* solver_ptr = new DirectBlock ( linearSolver );
    //g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr ); // G-N
    //g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr ); // L-M
    

    
    std::unique_ptr linearSolver ( new g2o::LinearSolverDense());
    std::unique_ptr solver_ptr ( new DirectBlock ( std::move(linearSolver)));
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( std::move(solver_ptr));

     
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm ( solver );
    optimizer.setVerbose( true );

    g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap();
    pose->setEstimate ( g2o::SE3Quat ( Tcw.rotation(), Tcw.translation() ) );
    pose->setId ( 0 );
    optimizer.addVertex ( pose );

    // 添加边
    int id=1;
    for ( Measurement m: measurements )
    {
        EdgeSE3ProjectDirect* edge = new EdgeSE3ProjectDirect (
            m.pos_world,
            K ( 0,0 ), K ( 1,1 ), K ( 0,2 ), K ( 1,2 ), gray
        );
        edge->setVertex ( 0, pose );
        edge->setMeasurement ( m.grayscale );
        edge->setInformation ( Eigen::Matrix::Identity() );
        edge->setId ( id++ );
        optimizer.addEdge ( edge );
    }
    cout<<"edges in graph: "<estimate();
}

CMakeLists.txt

cmake_minimum_required( VERSION 2.8 )
project( directMethod )

#set( CMAKE_BUILD_TYPE Release )
#set( CMAKE_CXX_FLAGS "-std=c++14 -O3" )
set(CMAKE_BUILD_TYPE "Release")
add_definitions("-DENABLE_SSE")
#set(CMAKE_CXX_FLAGS "-std=c++14 ${SSE_FLAGS} -g -O3 -march=native")
set( CMAKE_CXX_FLAGS "-std=c++14 -O3" )

# 添加cmake模块路径
list( APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules )

find_package( OpenCV )
include_directories( ${OpenCV_INCLUDE_DIRS} )

find_package( G2O )
include_directories( ${G2O_INCLUDE_DIRS} ) 

include_directories(
        ${OpenCV_INCLUDE_DIRS}
        ${G2O_INCLUDE_DIRS}
        ${Sophus_INCLUDE_DIRS}
        "/usr/include/eigen3/"
        ${Pangolin_INCLUDE_DIRS}
)

set( G2O_LIBS 
    g2o_core g2o_types_sba g2o_solver_csparse g2o_stuff g2o_csparse_extension 
)

add_executable( direct_sparse direct_sparse.cpp )
target_link_libraries( direct_sparse ${OpenCV_LIBS} ${G2O_LIBS})

add_executable( direct_sparse1 direct_sparse1.cpp )
target_link_libraries( direct_sparse1 ${OpenCV_LIBS} ${G2O_LIBS} )


add_executable( direct_semidense direct_semidense.cpp )
target_link_libraries( direct_semidense ${OpenCV_LIBS} ${G2O_LIBS} )


add_executable( direct_semidense1 direct_semidense1.cpp )
target_link_libraries( direct_semidense1 ${OpenCV_LIBS} ${G2O_LIBS} )

 执行结果:

./direct_semidense ../../data
*********** loop 0 ************
add total 12556 measurements.
*********** loop 1 ************
edges in graph: 12556
iteration= 0	 chi2= 72633591.401419	 time= 0.00203194	 cumTime= 0.00203194	 edges= 12556	 schur= 0	 lambda= 12900954.939934	 levenbergIter= 1
iteration= 1	 chi2= 62926900.131419	 time= 0.00198175	 cumTime= 0.00401369	 edges= 12556	 schur= 0	 lambda= 4300318.313311	 levenbergIter= 1
iteration= 2	 chi2= 52845484.671121	 time= 0.00190874	 cumTime= 0.00592243	 edges= 12556	 schur= 0	 lambda= 1433439.437770	 levenbergIter= 1
iteration= 3	 chi2= 45449292.558261	 time= 0.00192286	 cumTime= 0.00784528	 edges= 12556	 schur= 0	 lambda= 477813.145923	 levenbergIter= 1
iteration= 4	 chi2= 38422805.114205	 time= 0.00195591	 cumTime= 0.00980119	 edges= 12556	 schur= 0	 lambda= 159271.048641	 levenbergIter= 1
iteration= 5	 chi2= 31970398.890953	 time= 0.0019295	 cumTime= 0.0117307	 edges= 12556	 schur= 0	 lambda= 53090.349547	 levenbergIter= 1
iteration= 6	 chi2= 24270565.530351	 time= 0.00190734	 cumTime= 0.013638	 edges= 12556	 schur= 0	 lambda= 17696.783182	 levenbergIter= 1
iteration= 7	 chi2= 12153446.174612	 time= 0.00197201	 cumTime= 0.01561	 edges= 12556	 schur= 0	 lambda= 5898.927727	 levenbergIter= 1
iteration= 8	 chi2= 5615434.148147	 time= 0.0020526	 cumTime= 0.0176626	 edges= 12556	 schur= 0	 lambda= 1966.309242	 levenbergIter= 1
iteration= 9	 chi2= 4849512.586059	 time= 0.00202361	 cumTime= 0.0196862	 edges= 12556	 schur= 0	 lambda= 655.436414	 levenbergIter= 1
iteration= 10	 chi2= 4785381.917957	 time= 0.00190271	 cumTime= 0.021589	 edges= 12556	 schur= 0	 lambda= 218.478805	 levenbergIter= 1
iteration= 11	 chi2= 4785319.436062	 time= 0.00190333	 cumTime= 0.0234923	 edges= 12556	 schur= 0	 lambda= 145.652536	 levenbergIter= 1
iteration= 12	 chi2= 4785319.043803	 time= 0.00653219	 cumTime= 0.0300245	 edges= 12556	 schur= 0	 lambda= 1708231013067781.250000	 levenbergIter= 10
direct method costs time: 0.0432346 seconds.
Tcw=   0.999626   0.0206545  -0.0179199   0.0159529
 -0.0207425    0.999774 -0.00473951 -0.00352488
  0.0178179  0.00510944    0.999828   0.0474896
          0           0           0           1
*********** loop 2 ************
edges in graph: 12556
iteration= 0	 chi2= 64054091.635612	 time= 0.00207077	 cumTime= 0.00207077	 edges= 12556	 schur= 0	 lambda= 11746441.098549	 levenbergIter= 1
iteration= 1	 chi2= 49928789.420353	 time= 0.00200024	 cumTime= 0.00407101	 edges= 12556	 schur= 0	 lambda= 3915480.366183	 levenbergIter= 1
iteration= 2	 chi2= 40905518.557446	 time= 0.00192051	 cumTime= 0.00599152	 edges= 12556	 schur= 0	 lambda= 1305160.122061	 levenbergIter= 1
iteration= 3	 chi2= 30834251.286537	 time= 0.00197487	 cumTime= 0.0079664	 edges= 12556	 schur= 0	 lambda= 435053.374020	 levenbergIter= 1
iteration= 4	 chi2= 21824701.679727	 time= 0.00193962	 cumTime= 0.00990602	 edges= 12556	 schur= 0	 lambda= 145017.791340	 levenbergIter= 1
iteration= 5	 chi2= 9755306.166373	 time= 0.00192242	 cumTime= 0.0118284	 edges= 12556	 schur= 0	 lambda= 48339.263780	 levenbergIter= 1
iteration= 6	 chi2= 7175144.162209	 time= 0.00212803	 cumTime= 0.0139565	 edges= 12556	 schur= 0	 lambda= 16113.087927	 levenbergIter= 1
iteration= 7	 chi2= 6906428.680463	 time= 0.0019498	 cumTime= 0.0159063	 edges= 12556	 schur= 0	 lambda= 5371.029309	 levenbergIter= 1
iteration= 8	 chi2= 6866111.966045	 time= 0.00191189	 cumTime= 0.0178182	 edges= 12556	 schur= 0	 lambda= 1790.343103	 levenbergIter= 1
iteration= 9	 chi2= 6862465.198207	 time= 0.00197429	 cumTime= 0.0197925	 edges= 12556	 schur= 0	 lambda= 1193.562069	 levenbergIter= 1
iteration= 10	 chi2= 6862411.175096	 time= 0.00191108	 cumTime= 0.0217035	 edges= 12556	 schur= 0	 lambda= 795.708046	 levenbergIter= 1
iteration= 11	 chi2= 6862368.547439	 time= 0.00563595	 cumTime= 0.0273395	 edges= 12556	 schur= 0	 lambda= 142397501404.643890	 levenbergIter= 8
iteration= 12	 chi2= 6862364.922391	 time= 0.00299751	 cumTime= 0.030337	 edges= 12556	 schur= 0	 lambda= 759453340824.767334	 levenbergIter= 3
iteration= 13	 chi2= 6862363.644881	 time= 0.00298225	 cumTime= 0.0333192	 edges= 12556	 schur= 0	 lambda= 4050417817732.092285	 levenbergIter= 3
iteration= 14	 chi2= 6862363.076746	 time= 0.00356282	 cumTime= 0.0368821	 edges= 12556	 schur= 0	 lambda= 86408913444951.296875	 levenbergIter= 4
iteration= 15	 chi2= 6862361.783253	 time= 0.00242732	 cumTime= 0.0393094	 edges= 12556	 schur= 0	 lambda= 57605942296634.195312	 levenbergIter= 2
iteration= 16	 chi2= 6862361.740822	 time= 0.00414043	 cumTime= 0.0434498	 edges= 12556	 schur= 0	 lambda= 19662828303917804.000000	 levenbergIter= 5
iteration= 17	 chi2= 6862361.555867	 time= 0.0019127	 cumTime= 0.0453625	 edges= 12556	 schur= 0	 lambda= 6554276101305934.000000	 levenbergIter= 1
iteration= 18	 chi2= 6862361.528706	 time= 0.00298187	 cumTime= 0.0483444	 edges= 12556	 schur= 0	 lambda= 17478069603482490.000000	 levenbergIter= 3
iteration= 19	 chi2= 6862361.528658	 time= 0.00351384	 cumTime= 0.0518582	 edges= 12556	 schur= 0	 lambda= 745730969748586240.000000	 levenbergIter= 4
iteration= 20	 chi2= 6862361.528658	 time= 0.00199555	 cumTime= 0.0538538	 edges= 12556	 schur= 0	 lambda= 1491461939497172480.000000	 levenbergIter= 1
direct method costs time: 0.0710072 seconds.
Tcw=   0.998905   0.0388895  -0.0259903  -0.0103611
 -0.0389581    0.999239 -0.00213735  -0.0144453
  0.0258874  0.00314754     0.99966   0.0861913
          0           0           0           1
*********** loop 3 ************
edges in graph: 12556
iteration= 0	 chi2= 82910879.482012	 time= 0.00398495	 cumTime= 0.00398495	 edges= 12556	 schur= 0	 lambda= 6169406.099584	 levenbergIter= 1
iteration= 1	 chi2= 65771814.131560	 time= 0.00324883	 cumTime= 0.00723378	 edges= 12556	 schur= 0	 lambda= 2056468.699861	 levenbergIter= 1
iteration= 2	 chi2= 50704891.266112	 time= 0.00285622	 cumTime= 0.01009	 edges= 12556	 schur= 0	 lambda= 685489.566620	 levenbergIter= 1
iteration= 3	 chi2= 42573860.067371	 time= 0.00267184	 cumTime= 0.0127618	 edges= 12556	 schur= 0	 lambda= 228496.522207	 levenbergIter= 1
iteration= 4	 chi2= 31836768.361608	 time= 0.00253297	 cumTime= 0.0152948	 edges= 12556	 schur= 0	 lambda= 76165.507402	 levenbergIter= 1
iteration= 5	 chi2= 17969581.308843	 time= 0.00234691	 cumTime= 0.0176417	 edges= 12556	 schur= 0	 lambda= 25388.502467	 levenbergIter= 1
iteration= 6	 chi2= 7931996.778542	 time= 0.00222524	 cumTime= 0.019867	 edges= 12556	 schur= 0	 lambda= 8462.834156	 levenbergIter= 1
iteration= 7	 chi2= 7307169.083813	 time= 0.00208339	 cumTime= 0.0219504	 edges= 12556	 schur= 0	 lambda= 2820.944719	 levenbergIter= 1
iteration= 8	 chi2= 7274251.441660	 time= 0.00199832	 cumTime= 0.0239487	 edges= 12556	 schur= 0	 lambda= 1880.629812	 levenbergIter= 1
iteration= 9	 chi2= 7270720.342762	 time= 0.00197917	 cumTime= 0.0259278	 edges= 12556	 schur= 0	 lambda= 626.876604	 levenbergIter= 1
iteration= 10	 chi2= 7270710.835258	 time= 0.00610449	 cumTime= 0.0320323	 edges= 12556	 schur= 0	 lambda= 14359544071374.978516	 levenbergIter= 9
iteration= 11	 chi2= 7270693.258983	 time= 0.00195883	 cumTime= 0.0339912	 edges= 12556	 schur= 0	 lambda= 6796651598741.770508	 levenbergIter= 1
iteration= 12	 chi2= 7270681.062026	 time= 0.00195638	 cumTime= 0.0359475	 edges= 12556	 schur= 0	 lambda= 4531101065827.846680	 levenbergIter= 1
iteration= 13	 chi2= 7270674.808132	 time= 0.00198433	 cumTime= 0.0379319	 edges= 12556	 schur= 0	 lambda= 3020734043885.230957	 levenbergIter= 1
iteration= 14	 chi2= 7270673.196159	 time= 0.00292117	 cumTime= 0.040853	 edges= 12556	 schur= 0	 lambda= 16110581567387.898438	 levenbergIter= 3
iteration= 15	 chi2= 7270672.394194	 time= 0.00250246	 cumTime= 0.0433555	 edges= 12556	 schur= 0	 lambda= 21480775423183.863281	 levenbergIter= 2
iteration= 16	 chi2= 7270672.240369	 time= 0.00399782	 cumTime= 0.0473533	 edges= 12556	 schur= 0	 lambda= 7332104677780092.000000	 levenbergIter= 5
iteration= 17	 chi2= 7270672.165100	 time= 0.00297799	 cumTime= 0.0503313	 edges= 12556	 schur= 0	 lambda= 19552279140746912.000000	 levenbergIter= 3
iteration= 18	 chi2= 7270671.880704	 time= 0.00246083	 cumTime= 0.0527921	 edges= 12556	 schur= 0	 lambda= 13034852760497940.000000	 levenbergIter= 2
iteration= 19	 chi2= 7270671.843933	 time= 0.00298128	 cumTime= 0.0557734	 edges= 12556	 schur= 0	 lambda= 34759607361327840.000000	 levenbergIter= 3
iteration= 20	 chi2= 7270671.843933	 time= 0.00399836	 cumTime= 0.0597718	 edges= 12556	 schur= 0	 lambda= 1139002814015990661120.000000	 levenbergIter= 5
direct method costs time: 0.0838985 seconds.
Tcw=    0.99766   0.0570194  -0.0377176   -0.040892
  -0.056826    0.998365   0.0061796  -0.0340115
  0.0380083 -0.00402179    0.999269    0.141452
          0           0           0           1
*********** loop 4 ************
edges in graph: 12556
iteration= 0	 chi2= 74528187.132917	 time= 0.00219583	 cumTime= 0.00219583	 edges= 12556	 schur= 0	 lambda= 5131511.938933	 levenbergIter= 1
iteration= 1	 chi2= 57849063.123861	 time= 0.00190137	 cumTime= 0.0040972	 edges= 12556	 schur= 0	 lambda= 1710503.979644	 levenbergIter= 1
iteration= 2	 chi2= 46261275.030205	 time= 0.00197663	 cumTime= 0.00607383	 edges= 12556	 schur= 0	 lambda= 570167.993215	 levenbergIter= 1
iteration= 3	 chi2= 38125853.635180	 time= 0.00189239	 cumTime= 0.00796622	 edges= 12556	 schur= 0	 lambda= 190055.997738	 levenbergIter= 1
iteration= 4	 chi2= 31251281.126722	 time= 0.00201128	 cumTime= 0.0099775	 edges= 12556	 schur= 0	 lambda= 63351.999246	 levenbergIter= 1
iteration= 5	 chi2= 20637359.085714	 time= 0.00213187	 cumTime= 0.0121094	 edges= 12556	 schur= 0	 lambda= 21117.333082	 levenbergIter= 1
iteration= 6	 chi2= 11082708.106920	 time= 0.00198391	 cumTime= 0.0140933	 edges= 12556	 schur= 0	 lambda= 7039.111027	 levenbergIter= 1
iteration= 7	 chi2= 10014886.252565	 time= 0.00191955	 cumTime= 0.0160128	 edges= 12556	 schur= 0	 lambda= 2346.370342	 levenbergIter= 1
iteration= 8	 chi2= 9933557.358926	 time= 0.00198484	 cumTime= 0.0179977	 edges= 12556	 schur= 0	 lambda= 782.123447	 levenbergIter= 1
iteration= 9	 chi2= 9920569.797580	 time= 0.00193966	 cumTime= 0.0199373	 edges= 12556	 schur= 0	 lambda= 260.707816	 levenbergIter= 1
iteration= 10	 chi2= 9919401.318880	 time= 0.00197849	 cumTime= 0.0219158	 edges= 12556	 schur= 0	 lambda= 86.902605	 levenbergIter= 1
iteration= 11	 chi2= 9919256.492111	 time= 0.00198626	 cumTime= 0.0239021	 edges= 12556	 schur= 0	 lambda= 56.462122	 levenbergIter= 1
iteration= 12	 chi2= 9919202.892643	 time= 0.00604598	 cumTime= 0.0299481	 edges= 12556	 schur= 0	 lambda= 1293349153237.299316	 levenbergIter= 9
iteration= 13	 chi2= 9919187.569843	 time= 0.00195102	 cumTime= 0.0318991	 edges= 12556	 schur= 0	 lambda= 431116384412.433105	 levenbergIter= 1
iteration= 14	 chi2= 9919179.614289	 time= 0.00299901	 cumTime= 0.0348981	 edges= 12556	 schur= 0	 lambda= 1149643691766.488281	 levenbergIter= 3
iteration= 15	 chi2= 9919176.596775	 time= 0.00295571	 cumTime= 0.0378538	 edges= 12556	 schur= 0	 lambda= 3065716511377.301758	 levenbergIter= 3
iteration= 16	 chi2= 9919176.215136	 time= 0.00415	 cumTime= 0.0420038	 edges= 12556	 schur= 0	 lambda= 1046431235883452.250000	 levenbergIter= 5
iteration= 17	 chi2= 9919175.439131	 time= 0.00188557	 cumTime= 0.0438894	 edges= 12556	 schur= 0	 lambda= 348810411961150.750000	 levenbergIter= 1
iteration= 18	 chi2= 9919175.053316	 time= 0.00303776	 cumTime= 0.0469271	 edges= 12556	 schur= 0	 lambda= 930161098563068.625000	 levenbergIter= 3
iteration= 19	 chi2= 9919175.053316	 time= 0.00403908	 cumTime= 0.0509662	 edges= 12556	 schur= 0	 lambda= 30479518877714632704.000000	 levenbergIter= 5
direct method costs time: 0.067502 seconds.
Tcw=   0.995639   0.0747533   -0.055816  -0.0336959
 -0.0740798    0.997153   0.0140426  -0.0449229
  0.0567068 -0.00984653    0.998342    0.201114
          0           0           0           1
*********** loop 5 ************
edges in graph: 12556
iteration= 0	 chi2= 72822392.630478	 time= 0.00215848	 cumTime= 0.00215848	 edges= 12556	 schur= 0	 lambda= 3545280.405102	 levenbergIter= 1
iteration= 1	 chi2= 61374186.635502	 time= 0.00189387	 cumTime= 0.00405235	 edges= 12556	 schur= 0	 lambda= 1181760.135034	 levenbergIter= 1
iteration= 2	 chi2= 48972843.436029	 time= 0.00194134	 cumTime= 0.00599369	 edges= 12556	 schur= 0	 lambda= 393920.045011	 levenbergIter= 1
iteration= 3	 chi2= 39959163.565811	 time= 0.0018923	 cumTime= 0.00788599	 edges= 12556	 schur= 0	 lambda= 131306.681670	 levenbergIter= 1
iteration= 4	 chi2= 36851109.049488	 time= 0.00197016	 cumTime= 0.00985615	 edges= 12556	 schur= 0	 lambda= 43768.893890	 levenbergIter= 1
iteration= 5	 chi2= 34956713.601657	 time= 0.00196167	 cumTime= 0.0118178	 edges= 12556	 schur= 0	 lambda= 14589.631297	 levenbergIter= 1
iteration= 6	 chi2= 33337192.904026	 time= 0.00188841	 cumTime= 0.0137062	 edges= 12556	 schur= 0	 lambda= 4863.210432	 levenbergIter= 1
iteration= 7	 chi2= 31314589.024519	 time= 0.00211784	 cumTime= 0.0158241	 edges= 12556	 schur= 0	 lambda= 1621.070144	 levenbergIter= 1
iteration= 8	 chi2= 28311905.356978	 time= 0.00207751	 cumTime= 0.0179016	 edges= 12556	 schur= 0	 lambda= 540.356715	 levenbergIter= 1
iteration= 9	 chi2= 22744726.531003	 time= 0.00188491	 cumTime= 0.0197865	 edges= 12556	 schur= 0	 lambda= 180.118905	 levenbergIter= 1
iteration= 10	 chi2= 13319736.610417	 time= 0.00196218	 cumTime= 0.0217487	 edges= 12556	 schur= 0	 lambda= 60.039635	 levenbergIter= 1
iteration= 11	 chi2= 13072528.635744	 time= 0.00188421	 cumTime= 0.0236329	 edges= 12556	 schur= 0	 lambda= 29.211134	 levenbergIter= 1
iteration= 12	 chi2= 13048993.595588	 time= 0.00196133	 cumTime= 0.0255942	 edges= 12556	 schur= 0	 lambda= 9.737045	 levenbergIter= 1
iteration= 13	 chi2= 13045628.530237	 time= 0.00194759	 cumTime= 0.0275418	 edges= 12556	 schur= 0	 lambda= 3.245682	 levenbergIter= 1
iteration= 14	 chi2= 13044153.419754	 time= 0.00188537	 cumTime= 0.0294272	 edges= 12556	 schur= 0	 lambda= 1.081894	 levenbergIter= 1
iteration= 15	 chi2= 13043655.891602	 time= 0.00195245	 cumTime= 0.0313796	 edges= 12556	 schur= 0	 lambda= 0.360631	 levenbergIter= 1
iteration= 16	 chi2= 13043406.983842	 time= 0.00207174	 cumTime= 0.0334513	 edges= 12556	 schur= 0	 lambda= 0.120210	 levenbergIter= 1
iteration= 17	 chi2= 13043287.480892	 time= 0.00188976	 cumTime= 0.0353411	 edges= 12556	 schur= 0	 lambda= 0.040070	 levenbergIter= 1
iteration= 18	 chi2= 13043225.015030	 time= 0.00200682	 cumTime= 0.0373479	 edges= 12556	 schur= 0	 lambda= 0.013357	 levenbergIter= 1
iteration= 19	 chi2= 13043197.342985	 time= 0.00194669	 cumTime= 0.0392946	 edges= 12556	 schur= 0	 lambda= 0.004452	 levenbergIter= 1
iteration= 20	 chi2= 13043184.290833	 time= 0.00190651	 cumTime= 0.0412011	 edges= 12556	 schur= 0	 lambda= 0.001484	 levenbergIter= 1
iteration= 21	 chi2= 13043172.729153	 time= 0.00193715	 cumTime= 0.0431383	 edges= 12556	 schur= 0	 lambda= 0.000495	 levenbergIter= 1
iteration= 22	 chi2= 13043171.061467	 time= 0.00192762	 cumTime= 0.0450659	 edges= 12556	 schur= 0	 lambda= 0.000165	 levenbergIter= 1
iteration= 23	 chi2= 13043170.864410	 time= 0.00196113	 cumTime= 0.047027	 edges= 12556	 schur= 0	 lambda= 0.000055	 levenbergIter= 1
iteration= 24	 chi2= 13043170.864410	 time= 0.00679344	 cumTime= 0.0538205	 edges= 12556	 schur= 0	 lambda= 1980355298773.438721	 levenbergIter= 10
direct method costs time: 0.0728578 seconds.
Tcw=  0.993432  0.0908216 -0.0696016 -0.0234251
-0.0889695   0.995604  0.0292704 -0.0675555
  0.071954 -0.0228857   0.997145   0.271233
         0          0          0          1
*********** loop 6 ************
edges in graph: 12556
iteration= 0	 chi2= 72615339.254368	 time= 0.00413464	 cumTime= 0.00413464	 edges= 12556	 schur= 0	 lambda= 2577889.220350	 levenbergIter= 1
iteration= 1	 chi2= 55594053.158943	 time= 0.00332422	 cumTime= 0.00745886	 edges= 12556	 schur= 0	 lambda= 859296.406783	 levenbergIter= 1
iteration= 2	 chi2= 42163490.895525	 time= 0.00301068	 cumTime= 0.0104695	 edges= 12556	 schur= 0	 lambda= 286432.135594	 levenbergIter= 1
iteration= 3	 chi2= 37599642.045044	 time= 0.00271699	 cumTime= 0.0131865	 edges= 12556	 schur= 0	 lambda= 95477.378531	 levenbergIter= 1
iteration= 4	 chi2= 36148957.061350	 time= 0.00256971	 cumTime= 0.0157562	 edges= 12556	 schur= 0	 lambda= 31825.792844	 levenbergIter= 1
iteration= 5	 chi2= 34798934.282089	 time= 0.00231479	 cumTime= 0.018071	 edges= 12556	 schur= 0	 lambda= 10608.597615	 levenbergIter= 1
iteration= 6	 chi2= 33275148.745603	 time= 0.0022452	 cumTime= 0.0203162	 edges= 12556	 schur= 0	 lambda= 3536.199205	 levenbergIter= 1
iteration= 7	 chi2= 31158561.483538	 time= 0.00209682	 cumTime= 0.022413	 edges= 12556	 schur= 0	 lambda= 1178.733068	 levenbergIter= 1
iteration= 8	 chi2= 27336828.704135	 time= 0.0020116	 cumTime= 0.0244246	 edges= 12556	 schur= 0	 lambda= 392.911023	 levenbergIter= 1
iteration= 9	 chi2= 18521528.753670	 time= 0.00198606	 cumTime= 0.0264107	 edges= 12556	 schur= 0	 lambda= 130.970341	 levenbergIter= 1
iteration= 10	 chi2= 14982202.879845	 time= 0.00191272	 cumTime= 0.0283234	 edges= 12556	 schur= 0	 lambda= 43.656780	 levenbergIter= 1
iteration= 11	 chi2= 14892926.072438	 time= 0.00193932	 cumTime= 0.0302627	 edges= 12556	 schur= 0	 lambda= 14.552260	 levenbergIter= 1
iteration= 12	 chi2= 14887641.887668	 time= 0.0019925	 cumTime= 0.0322552	 edges= 12556	 schur= 0	 lambda= 4.850753	 levenbergIter= 1
iteration= 13	 chi2= 14886891.577526	 time= 0.00188202	 cumTime= 0.0341373	 edges= 12556	 schur= 0	 lambda= 3.233836	 levenbergIter= 1
iteration= 14	 chi2= 14886648.587024	 time= 0.00614012	 cumTime= 0.0402774	 edges= 12556	 schur= 0	 lambda= 74075829596.988525	 levenbergIter= 9
iteration= 15	 chi2= 14886594.621617	 time= 0.00298954	 cumTime= 0.0432669	 edges= 12556	 schur= 0	 lambda= 197535545591.969391	 levenbergIter= 3
iteration= 16	 chi2= 14886584.739849	 time= 0.00297924	 cumTime= 0.0462462	 edges= 12556	 schur= 0	 lambda= 636632444539.763306	 levenbergIter= 3
iteration= 17	 chi2= 14886578.872723	 time= 0.00289478	 cumTime= 0.0491409	 edges= 12556	 schur= 0	 lambda= 1697686518772.702148	 levenbergIter= 3
iteration= 18	 chi2= 14886577.419458	 time= 0.00238787	 cumTime= 0.0515288	 edges= 12556	 schur= 0	 lambda= 2263582025030.269531	 levenbergIter= 2
iteration= 19	 chi2= 14886576.937712	 time= 0.00245274	 cumTime= 0.0539816	 edges= 12556	 schur= 0	 lambda= 3018109366707.025879	 levenbergIter= 2
iteration= 20	 chi2= 14886576.864661	 time= 0.0044903	 cumTime= 0.0584719	 edges= 12556	 schur= 0	 lambda= 32965802576085272.000000	 levenbergIter= 6
iteration= 21	 chi2= 14886576.864661	 time= 0.00359365	 cumTime= 0.0620655	 edges= 12556	 schur= 0	 lambda= 33756981837911318528.000000	 levenbergIter= 4
direct method costs time: 0.086651 seconds.
Tcw=  0.991776   0.103867 -0.0747781 -0.0331323
 -0.100849   0.993969  0.0430708 -0.0772277
 0.0788007 -0.0351753    0.99627   0.346411
         0          0          0          1
*********** loop 7 ************
edges in graph: 12556
iteration= 0	 chi2= 76126715.275080	 time= 0.00484098	 cumTime= 0.00484098	 edges= 12556	 schur= 0	 lambda= 3403852.459597	 levenbergIter= 1
iteration= 1	 chi2= 72769339.434144	 time= 0.00371563	 cumTime= 0.00855661	 edges= 12556	 schur= 0	 lambda= 1134617.486532	 levenbergIter= 1
iteration= 2	 chi2= 66841216.326109	 time= 0.00319426	 cumTime= 0.0117509	 edges= 12556	 schur= 0	 lambda= 378205.828844	 levenbergIter= 1
iteration= 3	 chi2= 58061634.010826	 time= 0.00290521	 cumTime= 0.0146561	 edges= 12556	 schur= 0	 lambda= 126068.609615	 levenbergIter= 1
iteration= 4	 chi2= 48658865.716651	 time= 0.00275282	 cumTime= 0.0174089	 edges= 12556	 schur= 0	 lambda= 42022.869872	 levenbergIter= 1
iteration= 5	 chi2= 39343059.583034	 time= 0.0025716	 cumTime= 0.0199805	 edges= 12556	 schur= 0	 lambda= 14007.623291	 levenbergIter= 1
iteration= 6	 chi2= 37402395.425229	 time= 0.00230087	 cumTime= 0.0222814	 edges= 12556	 schur= 0	 lambda= 4669.207764	 levenbergIter= 1
iteration= 7	 chi2= 36103537.153666	 time= 0.00225346	 cumTime= 0.0245348	 edges= 12556	 schur= 0	 lambda= 1556.402588	 levenbergIter= 1
iteration= 8	 chi2= 34739663.388504	 time= 0.0020494	 cumTime= 0.0265842	 edges= 12556	 schur= 0	 lambda= 518.800863	 levenbergIter= 1
iteration= 9	 chi2= 33166637.934856	 time= 0.0020558	 cumTime= 0.02864	 edges= 12556	 schur= 0	 lambda= 172.933621	 levenbergIter= 1
iteration= 10	 chi2= 31476796.423510	 time= 0.00192857	 cumTime= 0.0305686	 edges= 12556	 schur= 0	 lambda= 57.644540	 levenbergIter= 1
iteration= 11	 chi2= 29595556.083057	 time= 0.00187781	 cumTime= 0.0324464	 edges= 12556	 schur= 0	 lambda= 19.214847	 levenbergIter= 1
iteration= 12	 chi2= 26536887.307927	 time= 0.00194151	 cumTime= 0.0343879	 edges= 12556	 schur= 0	 lambda= 6.404949	 levenbergIter= 1
iteration= 13	 chi2= 20119967.950432	 time= 0.00187897	 cumTime= 0.0362669	 edges= 12556	 schur= 0	 lambda= 2.134983	 levenbergIter= 1
iteration= 14	 chi2= 13999752.913560	 time= 0.00187815	 cumTime= 0.038145	 edges= 12556	 schur= 0	 lambda= 0.711661	 levenbergIter= 1
iteration= 15	 chi2= 13896830.877163	 time= 0.00196864	 cumTime= 0.0401137	 edges= 12556	 schur= 0	 lambda= 0.237220	 levenbergIter= 1
iteration= 16	 chi2= 13883130.474936	 time= 0.00188911	 cumTime= 0.0420028	 edges= 12556	 schur= 0	 lambda= 0.079073	 levenbergIter= 1
iteration= 17	 chi2= 13881070.475414	 time= 0.00194151	 cumTime= 0.0439443	 edges= 12556	 schur= 0	 lambda= 0.026358	 levenbergIter= 1
iteration= 18	 chi2= 13880532.047567	 time= 0.00204951	 cumTime= 0.0459938	 edges= 12556	 schur= 0	 lambda= 0.008786	 levenbergIter= 1
iteration= 19	 chi2= 13880185.174383	 time= 0.00187825	 cumTime= 0.0478721	 edges= 12556	 schur= 0	 lambda= 0.002929	 levenbergIter= 1
iteration= 20	 chi2= 13880043.513566	 time= 0.00198442	 cumTime= 0.0498565	 edges= 12556	 schur= 0	 lambda= 0.000976	 levenbergIter= 1
iteration= 21	 chi2= 13879945.953482	 time= 0.00192958	 cumTime= 0.0517861	 edges= 12556	 schur= 0	 lambda= 0.000325	 levenbergIter= 1
iteration= 22	 chi2= 13879890.851421	 time= 0.001879	 cumTime= 0.0536651	 edges= 12556	 schur= 0	 lambda= 0.000108	 levenbergIter= 1
iteration= 23	 chi2= 13879859.084591	 time= 0.00193961	 cumTime= 0.0556047	 edges= 12556	 schur= 0	 lambda= 0.000036	 levenbergIter= 1
iteration= 24	 chi2= 13879845.444717	 time= 0.00190357	 cumTime= 0.0575082	 edges= 12556	 schur= 0	 lambda= 0.000012	 levenbergIter= 1
iteration= 25	 chi2= 13879834.866027	 time= 0.00197325	 cumTime= 0.0594815	 edges= 12556	 schur= 0	 lambda= 0.000004	 levenbergIter= 1
iteration= 26	 chi2= 13879826.914010	 time= 0.00197705	 cumTime= 0.0614585	 edges= 12556	 schur= 0	 lambda= 0.000001	 levenbergIter= 1
iteration= 27	 chi2= 13879823.187287	 time= 0.00189244	 cumTime= 0.063351	 edges= 12556	 schur= 0	 lambda= 0.000000	 levenbergIter= 1
iteration= 28	 chi2= 13879820.362015	 time= 0.00201701	 cumTime= 0.065368	 edges= 12556	 schur= 0	 lambda= 0.000000	 levenbergIter= 1
iteration= 29	 chi2= 13879818.220320	 time= 0.00202852	 cumTime= 0.0673965	 edges= 12556	 schur= 0	 lambda= 0.000000	 levenbergIter= 1
direct method costs time: 0.0999934 seconds.
Tcw=  0.990165   0.112939 -0.0825744 -0.0265597
 -0.108131    0.99229  0.0605637  -0.110576
 0.0887777 -0.0510393   0.994743   0.437234
         0          0          0          1
*********** loop 8 ************
edges in graph: 12556
iteration= 0	 chi2= 84175871.369677	 time= 0.0040917	 cumTime= 0.0040917	 edges= 12556	 schur= 0	 lambda= 2380068.700399	 levenbergIter= 1
iteration= 1	 chi2= 61078995.869678	 time= 0.00331044	 cumTime= 0.00740214	 edges= 12556	 schur= 0	 lambda= 793356.233466	 levenbergIter= 1
iteration= 2	 chi2= 44678686.954011	 time= 0.00289414	 cumTime= 0.0102963	 edges= 12556	 schur= 0	 lambda= 264452.077822	 levenbergIter= 1
iteration= 3	 chi2= 37291882.913976	 time= 0.00269438	 cumTime= 0.0129907	 edges= 12556	 schur= 0	 lambda= 88150.692607	 levenbergIter= 1
iteration= 4	 chi2= 35821302.991413	 time= 0.0025769	 cumTime= 0.0155675	 edges= 12556	 schur= 0	 lambda= 29383.564202	 levenbergIter= 1
iteration= 5	 chi2= 34387389.611984	 time= 0.00230761	 cumTime= 0.0178752	 edges= 12556	 schur= 0	 lambda= 9794.521401	 levenbergIter= 1
iteration= 6	 chi2= 33699142.598652	 time= 0.00223297	 cumTime= 0.0201081	 edges= 12556	 schur= 0	 lambda= 3264.840467	 levenbergIter= 1
iteration= 7	 chi2= 33376151.465511	 time= 0.00209239	 cumTime= 0.0222005	 edges= 12556	 schur= 0	 lambda= 1088.280156	 levenbergIter= 1
iteration= 8	 chi2= 33062210.636318	 time= 0.00200785	 cumTime= 0.0242084	 edges= 12556	 schur= 0	 lambda= 362.760052	 levenbergIter= 1
iteration= 9	 chi2= 32653345.338549	 time= 0.00191657	 cumTime= 0.0261249	 edges= 12556	 schur= 0	 lambda= 120.920017	 levenbergIter= 1
iteration= 10	 chi2= 31975365.668054	 time= 0.00194104	 cumTime= 0.028066	 edges= 12556	 schur= 0	 lambda= 40.306672	 levenbergIter= 1
iteration= 11	 chi2= 30783352.054369	 time= 0.00199963	 cumTime= 0.0300656	 edges= 12556	 schur= 0	 lambda= 13.435557	 levenbergIter= 1
iteration= 12	 chi2= 28246380.871980	 time= 0.00193039	 cumTime= 0.031996	 edges= 12556	 schur= 0	 lambda= 4.478519	 levenbergIter= 1
iteration= 13	 chi2= 22550913.596786	 time= 0.00191856	 cumTime= 0.0339146	 edges= 12556	 schur= 0	 lambda= 1.492840	 levenbergIter= 1
iteration= 14	 chi2= 17277300.681064	 time= 0.00192574	 cumTime= 0.0358403	 edges= 12556	 schur= 0	 lambda= 0.497613	 levenbergIter= 1
iteration= 15	 chi2= 16389927.449531	 time= 0.00195607	 cumTime= 0.0377964	 edges= 12556	 schur= 0	 lambda= 0.165871	 levenbergIter= 1
iteration= 16	 chi2= 16289347.994950	 time= 0.00191979	 cumTime= 0.0397162	 edges= 12556	 schur= 0	 lambda= 0.055290	 levenbergIter= 1
iteration= 17	 chi2= 16278979.287526	 time= 0.0019173	 cumTime= 0.0416335	 edges= 12556	 schur= 0	 lambda= 0.018430	 levenbergIter= 1
iteration= 18	 chi2= 16278266.802790	 time= 0.00664827	 cumTime= 0.0482817	 edges= 12556	 schur= 0	 lambda= 216150733194.204865	 levenbergIter= 10
direct method costs time: 0.0711682 seconds.
Tcw=  0.988641   0.118336 -0.0926614  0.0343184
 -0.111659   0.990971  0.0742193    -0.1247
  0.100608 -0.0630298   0.992928   0.509306
         0          0          0          1
*********** loop 9 ************

 视觉SLAM十四讲CH8代码解析及课后习题详解_第1张图片

 将点的大小改小后:

cv::circle ( img_show, cv::Point2d ( pixel_prev ( 0,0 ), pixel_prev ( 1,0 ) ), 2, cv::Scalar ( b,g,r ), 1 );
            cv::circle ( img_show, cv::Point2d ( pixel_now ( 0,0 ), pixel_now ( 1,0 ) +color.rows ), 2, cv::Scalar ( b,g,r ), 1 );

 视觉SLAM十四讲CH8代码解析及课后习题详解_第2张图片

direct_sparse.cpp

#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;
using namespace g2o;

/********************************************
 * 本节演示了RGBD上的稀疏直接法 
 ********************************************/

// 一次测量的值,包括一个世界坐标系下三维点与一个灰度值
struct Measurement
{
    Measurement ( Eigen::Vector3d p, float g ) : pos_world ( p ), grayscale ( g ) {}
    Eigen::Vector3d pos_world;
    float grayscale;
};

inline Eigen::Vector3d project2Dto3D ( int x, int y, int d, float fx, float fy, float cx, float cy, float scale )
{
    float zz = float ( d ) /scale;
    float xx = zz* ( x-cx ) /fx;
    float yy = zz* ( y-cy ) /fy;
    return Eigen::Vector3d ( xx, yy, zz );
}

inline Eigen::Vector2d project3Dto2D ( float x, float y, float z, float fx, float fy, float cx, float cy )
{
    float u = fx*x/z+cx;
    float v = fy*y/z+cy;
    return Eigen::Vector2d ( u,v );
}

// 直接法估计位姿
// 输入:测量值(空间点的灰度),新的灰度图,相机内参; 输出:相机位姿
// 返回:true为成功,false失败
bool poseEstimationDirect ( const vector& measurements, cv::Mat* gray, Eigen::Matrix3f& intrinsics, Eigen::Isometry3d& Tcw );


// project a 3d point into an image plane, the error is photometric error
// an unary edge with one vertex SE3Expmap (the pose of camera)
class EdgeSE3ProjectDirect: public BaseUnaryEdge< 1, double, VertexSE3Expmap>
{
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW

    EdgeSE3ProjectDirect() {}

    EdgeSE3ProjectDirect ( Eigen::Vector3d point, float fx, float fy, float cx, float cy, cv::Mat* image )
        : x_world_ ( point ), fx_ ( fx ), fy_ ( fy ), cx_ ( cx ), cy_ ( cy ), image_ ( image )
    {}

    virtual void computeError()
    {
        const VertexSE3Expmap* v  =static_cast ( _vertices[0] );
        Eigen::Vector3d x_local = v->estimate().map ( x_world_ );
        float x = x_local[0]*fx_/x_local[2] + cx_;
        float y = x_local[1]*fy_/x_local[2] + cy_;
        // check x,y is in the image
        if ( x-4<0 || ( x+4 ) >image_->cols || ( y-4 ) <0 || ( y+4 ) >image_->rows )
        {
            _error ( 0,0 ) = 0.0;
            this->setLevel ( 1 );
        }
        else
        {
            _error ( 0,0 ) = getPixelValue ( x,y ) - _measurement;
        }
    }

    // plus in manifold
    virtual void linearizeOplus( )
    {
        if ( level() == 1 )
        {
            _jacobianOplusXi = Eigen::Matrix::Zero();
            return;
        }
        VertexSE3Expmap* vtx = static_cast ( _vertices[0] );
        Eigen::Vector3d xyz_trans = vtx->estimate().map ( x_world_ );   // q in book

        double x = xyz_trans[0];
        double y = xyz_trans[1];
        double invz = 1.0/xyz_trans[2];
        double invz_2 = invz*invz;

        float u = x*fx_*invz + cx_;
        float v = y*fy_*invz + cy_;

        // jacobian from se3 to u,v
        // NOTE that in g2o the Lie algebra is (\omega, \epsilon), where \omega is so(3) and \epsilon the translation
        Eigen::Matrix jacobian_uv_ksai;

        jacobian_uv_ksai ( 0,0 ) = - x*y*invz_2 *fx_;
        jacobian_uv_ksai ( 0,1 ) = ( 1+ ( x*x*invz_2 ) ) *fx_;
        jacobian_uv_ksai ( 0,2 ) = - y*invz *fx_;
        jacobian_uv_ksai ( 0,3 ) = invz *fx_;
        jacobian_uv_ksai ( 0,4 ) = 0;
        jacobian_uv_ksai ( 0,5 ) = -x*invz_2 *fx_;

        jacobian_uv_ksai ( 1,0 ) = - ( 1+y*y*invz_2 ) *fy_;
        jacobian_uv_ksai ( 1,1 ) = x*y*invz_2 *fy_;
        jacobian_uv_ksai ( 1,2 ) = x*invz *fy_;
        jacobian_uv_ksai ( 1,3 ) = 0;
        jacobian_uv_ksai ( 1,4 ) = invz *fy_;
        jacobian_uv_ksai ( 1,5 ) = -y*invz_2 *fy_;

        Eigen::Matrix jacobian_pixel_uv;

        jacobian_pixel_uv ( 0,0 ) = ( getPixelValue ( u+1,v )-getPixelValue ( u-1,v ) ) /2;
        jacobian_pixel_uv ( 0,1 ) = ( getPixelValue ( u,v+1 )-getPixelValue ( u,v-1 ) ) /2;

        _jacobianOplusXi = jacobian_pixel_uv*jacobian_uv_ksai;
    }

    // dummy read and write functions because we don't care...
    virtual bool read ( std::istream& in ) {}
    virtual bool write ( std::ostream& out ) const {}

protected:
    // get a gray scale value from reference image (bilinear interpolated)
    inline float getPixelValue ( float x, float y )
    {
        uchar* data = & image_->data[ int ( y ) * image_->step + int ( x ) ];
        float xx = x - floor ( x );
        float yy = y - floor ( y );
        return float (
                   ( 1-xx ) * ( 1-yy ) * data[0] +
                   xx* ( 1-yy ) * data[1] +
                   ( 1-xx ) *yy*data[ image_->step ] +
                   xx*yy*data[image_->step+1]
               );
    }
public:
    Eigen::Vector3d x_world_;   // 3D point in world frame
    float cx_=0, cy_=0, fx_=0, fy_=0; // Camera intrinsics
    cv::Mat* image_=nullptr;    // reference image
};

int main ( int argc, char** argv )
{
    if ( argc != 2 )
    {
        cout<<"usage: useLK path_to_dataset"< measurements;
    // 相机内参
    float cx = 325.5;
    float cy = 253.5;
    float fx = 518.0;
    float fy = 519.0;
    float depth_scale = 1000.0;
    Eigen::Matrix3f K;
    K<>time_rgb>>rgb_file>>time_depth>>depth_file;
        color = cv::imread ( path_to_dataset+"/"+rgb_file );
        depth = cv::imread ( path_to_dataset+"/"+depth_file, -1 );
        if ( color.data==nullptr || depth.data==nullptr )
            continue; 
        cv::cvtColor ( color, gray, cv::COLOR_BGR2GRAY );
        if ( index ==0 )
        {
            // 对第一帧提取FAST特征点
            vector keypoints;
            cv::Ptr detector = cv::FastFeatureDetector::create();
            detector->detect ( color, keypoints );
            for ( auto kp:keypoints )
            {
                // 去掉邻近边缘处的点
                if ( kp.pt.x < 20 || kp.pt.y < 20 || ( kp.pt.x+20 ) >color.cols || ( kp.pt.y+20 ) >color.rows )
                    continue;
                ushort d = depth.ptr ( cvRound ( kp.pt.y ) ) [ cvRound ( kp.pt.x ) ];
                if ( d==0 )
                    continue;
                Eigen::Vector3d p3d = project2Dto3D ( kp.pt.x, kp.pt.y, d, fx, fy, cx, cy, depth_scale );
                float grayscale = float ( gray.ptr ( cvRound ( kp.pt.y ) ) [ cvRound ( kp.pt.x ) ] );
                measurements.push_back ( Measurement ( p3d, grayscale ) );
            }
            prev_color = color.clone();
            continue;
        }
        // 使用直接法计算相机运动
        chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
        poseEstimationDirect ( measurements, &gray, K, Tcw );
        chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
        chrono::duration time_used = chrono::duration_cast> ( t2-t1 );
        cout<<"direct method costs time: "<& measurements, cv::Mat* gray, Eigen::Matrix3f& K, Eigen::Isometry3d& Tcw )
{
    // 初始化g2o
    typedef g2o::BlockSolver> DirectBlock;  // 求解的向量是6*1的
    //DirectBlock::LinearSolverType* linearSolver = new g2o::LinearSolverDense< DirectBlock::PoseMatrixType > ();
    //DirectBlock* solver_ptr = new DirectBlock ( linearSolver );
    //g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr ); // G-N
    //g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr ); // L-M
    std::unique_ptr linearSolver ( new g2o::LinearSolverDense());
    std::unique_ptr solver_ptr ( new DirectBlock ( std::move(linearSolver)));
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( std::move(solver_ptr));
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm ( solver );
    optimizer.setVerbose( true );

    g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap();
    pose->setEstimate ( g2o::SE3Quat ( Tcw.rotation(), Tcw.translation() ) );
    pose->setId ( 0 );
    optimizer.addVertex ( pose );

    // 添加边
    int id=1;
    for ( Measurement m: measurements )
    {
        EdgeSE3ProjectDirect* edge = new EdgeSE3ProjectDirect (
            m.pos_world,
            K ( 0,0 ), K ( 1,1 ), K ( 0,2 ), K ( 1,2 ), gray
        );
        edge->setVertex ( 0, pose );
        edge->setMeasurement ( m.grayscale );
        edge->setInformation ( Eigen::Matrix::Identity() );
        edge->setId ( id++ );
        optimizer.addEdge ( edge );
    }
    cout<<"edges in graph: "<estimate();
}

CMakeLists.txt

和上面一样

执行结果:

./direct_sparse ../../data
*********** loop 0 ************
*********** loop 1 ************
edges in graph: 1402
iteration= 0	 chi2= 6293572.221433	 time= 0.000296299	 cumTime= 0.000296299	 edges= 1402	 schur= 0	 lambda= 965806.498992	 levenbergIter= 1
iteration= 1	 chi2= 5888155.828834	 time= 0.000251655	 cumTime= 0.000547954	 edges= 1402	 schur= 0	 lambda= 321935.499664	 levenbergIter= 1
iteration= 2	 chi2= 5548017.147678	 time= 0.000250156	 cumTime= 0.00079811	 edges= 1402	 schur= 0	 lambda= 107311.833221	 levenbergIter= 1
iteration= 3	 chi2= 5290937.995946	 time= 0.000249944	 cumTime= 0.00104805	 edges= 1402	 schur= 0	 lambda= 35770.611074	 levenbergIter= 1
iteration= 4	 chi2= 5207371.610703	 time= 0.000250005	 cumTime= 0.00129806	 edges= 1402	 schur= 0	 lambda= 11923.537025	 levenbergIter= 1
iteration= 5	 chi2= 5156306.765017	 time= 0.000253176	 cumTime= 0.00155124	 edges= 1402	 schur= 0	 lambda= 3974.512342	 levenbergIter= 1
iteration= 6	 chi2= 5133807.422806	 time= 0.000250664	 cumTime= 0.0018019	 edges= 1402	 schur= 0	 lambda= 1324.837447	 levenbergIter= 1
iteration= 7	 chi2= 5124650.368695	 time= 0.000250457	 cumTime= 0.00205236	 edges= 1402	 schur= 0	 lambda= 441.612482	 levenbergIter= 1
iteration= 8	 chi2= 5112774.456392	 time= 0.00027613	 cumTime= 0.00232849	 edges= 1402	 schur= 0	 lambda= 147.204161	 levenbergIter= 1
iteration= 9	 chi2= 5103863.403139	 time= 0.000250364	 cumTime= 0.00257885	 edges= 1402	 schur= 0	 lambda= 49.068054	 levenbergIter= 1
iteration= 10	 chi2= 5085463.721599	 time= 0.000250061	 cumTime= 0.00282891	 edges= 1402	 schur= 0	 lambda= 16.356018	 levenbergIter= 1
iteration= 11	 chi2= 5052922.896857	 time= 0.000250117	 cumTime= 0.00307903	 edges= 1402	 schur= 0	 lambda= 5.452006	 levenbergIter= 1
iteration= 12	 chi2= 4972629.841316	 time= 0.000249897	 cumTime= 0.00332893	 edges= 1402	 schur= 0	 lambda= 1.817335	 levenbergIter= 1
iteration= 13	 chi2= 4900169.515522	 time= 0.000250179	 cumTime= 0.0035791	 edges= 1402	 schur= 0	 lambda= 0.605778	 levenbergIter= 1
iteration= 14	 chi2= 4888003.377098	 time= 0.000249578	 cumTime= 0.00382868	 edges= 1402	 schur= 0	 lambda= 0.201926	 levenbergIter= 1
iteration= 15	 chi2= 4887020.906430	 time= 0.000228279	 cumTime= 0.00405696	 edges= 1402	 schur= 0	 lambda= 0.134617	 levenbergIter= 1
iteration= 16	 chi2= 4886717.215284	 time= 0.000656648	 cumTime= 0.00471361	 edges= 1402	 schur= 0	 lambda= 24090727.650511	 levenbergIter= 8
iteration= 17	 chi2= 4885996.489698	 time= 0.000228124	 cumTime= 0.00494173	 edges= 1402	 schur= 0	 lambda= 8030242.550170	 levenbergIter= 1
iteration= 18	 chi2= 4885632.694219	 time= 0.000228245	 cumTime= 0.00516998	 edges= 1402	 schur= 0	 lambda= 5353495.033447	 levenbergIter= 1
iteration= 19	 chi2= 4885625.691907	 time= 0.000457031	 cumTime= 0.00562701	 edges= 1402	 schur= 0	 lambda= 228415788.093730	 levenbergIter= 4
iteration= 20	 chi2= 4885387.309209	 time= 0.000228231	 cumTime= 0.00585524	 edges= 1402	 schur= 0	 lambda= 76138596.031243	 levenbergIter= 1
iteration= 21	 chi2= 4885212.916240	 time= 0.000228318	 cumTime= 0.00608356	 edges= 1402	 schur= 0	 lambda= 25379532.010414	 levenbergIter= 1
iteration= 22	 chi2= 4885046.727489	 time= 0.000228051	 cumTime= 0.00631161	 edges= 1402	 schur= 0	 lambda= 8459844.003471	 levenbergIter= 1
iteration= 23	 chi2= 4884831.772796	 time= 0.000228395	 cumTime= 0.00654	 edges= 1402	 schur= 0	 lambda= 2819948.001157	 levenbergIter= 1
iteration= 24	 chi2= 4884332.947280	 time= 0.00022803	 cumTime= 0.00676803	 edges= 1402	 schur= 0	 lambda= 939982.667052	 levenbergIter= 1
iteration= 25	 chi2= 4883825.913749	 time= 0.000227988	 cumTime= 0.00699602	 edges= 1402	 schur= 0	 lambda= 313327.555684	 levenbergIter= 1
iteration= 26	 chi2= 4883383.826737	 time= 0.000228086	 cumTime= 0.00722411	 edges= 1402	 schur= 0	 lambda= 104442.518561	 levenbergIter= 1
iteration= 27	 chi2= 4883030.529985	 time= 0.000228103	 cumTime= 0.00745221	 edges= 1402	 schur= 0	 lambda= 34814.172854	 levenbergIter= 1
iteration= 28	 chi2= 4882854.735927	 time= 0.000239215	 cumTime= 0.00769143	 edges= 1402	 schur= 0	 lambda= 11604.724285	 levenbergIter= 1
iteration= 29	 chi2= 4882587.766097	 time= 0.000265416	 cumTime= 0.00795684	 edges= 1402	 schur= 0	 lambda= 3868.241428	 levenbergIter= 1
direct method costs time: 0.0110911 seconds.
Tcw=   0.99906  0.0147107  0.0407838  -0.272174
-0.0161384    0.99926   0.034902  -0.207344
-0.0402403 -0.0355274   0.998558  -0.089623
         0          0          0          1
*********** loop 2 ************
edges in graph: 1402
iteration= 0	 chi2= 7373902.978023	 time= 0.000319957	 cumTime= 0.000319957	 edges= 1402	 schur= 0	 lambda= 659462.718469	 levenbergIter= 1
iteration= 1	 chi2= 7318224.416046	 time= 0.000316246	 cumTime= 0.000636203	 edges= 1402	 schur= 0	 lambda= 219820.906156	 levenbergIter= 1
iteration= 2	 chi2= 7273774.690150	 time= 0.00028491	 cumTime= 0.000921113	 edges= 1402	 schur= 0	 lambda= 73273.635385	 levenbergIter= 1
iteration= 3	 chi2= 7207104.517968	 time= 0.000346131	 cumTime= 0.00126724	 edges= 1402	 schur= 0	 lambda= 24424.545128	 levenbergIter= 1
iteration= 4	 chi2= 7086855.080221	 time= 0.000396316	 cumTime= 0.00166356	 edges= 1402	 schur= 0	 lambda= 8141.515043	 levenbergIter= 1
iteration= 5	 chi2= 6851372.489263	 time= 0.000222192	 cumTime= 0.00188575	 edges= 1402	 schur= 0	 lambda= 2713.838348	 levenbergIter= 1
iteration= 6	 chi2= 6363864.651418	 time= 0.000222395	 cumTime= 0.00210815	 edges= 1402	 schur= 0	 lambda= 904.612783	 levenbergIter= 1
iteration= 7	 chi2= 5992247.916295	 time= 0.000241029	 cumTime= 0.00234918	 edges= 1402	 schur= 0	 lambda= 301.537594	 levenbergIter= 1
iteration= 8	 chi2= 5648821.981689	 time= 0.000222741	 cumTime= 0.00257192	 edges= 1402	 schur= 0	 lambda= 100.512531	 levenbergIter= 1
iteration= 9	 chi2= 5524363.392931	 time= 0.000222956	 cumTime= 0.00279487	 edges= 1402	 schur= 0	 lambda= 33.504177	 levenbergIter= 1
iteration= 10	 chi2= 5428608.363880	 time= 0.000245203	 cumTime= 0.00304008	 edges= 1402	 schur= 0	 lambda= 11.168059	 levenbergIter= 1
iteration= 11	 chi2= 5275088.252740	 time= 0.000286814	 cumTime= 0.00332689	 edges= 1402	 schur= 0	 lambda= 3.722686	 levenbergIter= 1
iteration= 12	 chi2= 5102935.213991	 time= 0.000283679	 cumTime= 0.00361057	 edges= 1402	 schur= 0	 lambda= 1.240895	 levenbergIter= 1
iteration= 13	 chi2= 5013617.434958	 time= 0.000283122	 cumTime= 0.00389369	 edges= 1402	 schur= 0	 lambda= 0.413632	 levenbergIter= 1
iteration= 14	 chi2= 4989686.431377	 time= 0.000257568	 cumTime= 0.00415126	 edges= 1402	 schur= 0	 lambda= 0.137877	 levenbergIter= 1
iteration= 15	 chi2= 4974934.845258	 time= 0.000244375	 cumTime= 0.00439563	 edges= 1402	 schur= 0	 lambda= 0.045959	 levenbergIter= 1
iteration= 16	 chi2= 4969876.746407	 time= 0.000351987	 cumTime= 0.00474762	 edges= 1402	 schur= 0	 lambda= 0.015320	 levenbergIter= 1
iteration= 17	 chi2= 4966864.535229	 time= 0.000243865	 cumTime= 0.00499149	 edges= 1402	 schur= 0	 lambda= 0.005107	 levenbergIter= 1
iteration= 18	 chi2= 4965509.741089	 time= 0.000230896	 cumTime= 0.00522238	 edges= 1402	 schur= 0	 lambda= 0.003404	 levenbergIter= 1
iteration= 19	 chi2= 4964542.688070	 time= 0.000230675	 cumTime= 0.00545306	 edges= 1402	 schur= 0	 lambda= 0.001135	 levenbergIter= 1
iteration= 20	 chi2= 4963641.818600	 time= 0.000252545	 cumTime= 0.0057056	 edges= 1402	 schur= 0	 lambda= 0.000378	 levenbergIter= 1
iteration= 21	 chi2= 4963541.722042	 time= 0.000230281	 cumTime= 0.00593588	 edges= 1402	 schur= 0	 lambda= 0.000252	 levenbergIter= 1
iteration= 22	 chi2= 4963541.722042	 time= 0.000847664	 cumTime= 0.00678355	 edges= 1402	 schur= 0	 lambda= 9085600825972.755859	 levenbergIter= 10
direct method costs time: 0.00999512 seconds.
Tcw=   0.99878  0.0347253  0.0350956  -0.308517
-0.0360817   0.998596  0.0387864  -0.228252
-0.0336994 -0.0400054   0.998631   -0.05351
         0          0          0          1
*********** loop 3 ************
edges in graph: 1402
iteration= 0	 chi2= 7652391.296677	 time= 0.00075729	 cumTime= 0.00075729	 edges= 1402	 schur= 0	 lambda= 488770.389310	 levenbergIter= 1
iteration= 1	 chi2= 7263810.066649	 time= 0.0006484	 cumTime= 0.00140569	 edges= 1402	 schur= 0	 lambda= 162923.463103	 levenbergIter= 1
iteration= 2	 chi2= 7113930.131795	 time= 0.000645919	 cumTime= 0.00205161	 edges= 1402	 schur= 0	 lambda= 54307.821034	 levenbergIter= 1
iteration= 3	 chi2= 6985494.549018	 time= 0.000645862	 cumTime= 0.00269747	 edges= 1402	 schur= 0	 lambda= 18102.607011	 levenbergIter= 1
iteration= 4	 chi2= 6821206.708909	 time= 0.000645833	 cumTime= 0.0033433	 edges= 1402	 schur= 0	 lambda= 6034.202337	 levenbergIter= 1
iteration= 5	 chi2= 6639561.237546	 time= 0.000568494	 cumTime= 0.0039118	 edges= 1402	 schur= 0	 lambda= 2011.400779	 levenbergIter= 1
iteration= 6	 chi2= 6413013.798621	 time= 0.000520107	 cumTime= 0.0044319	 edges= 1402	 schur= 0	 lambda= 670.466926	 levenbergIter= 1
iteration= 7	 chi2= 6226118.353718	 time= 0.000519886	 cumTime= 0.00495179	 edges= 1402	 schur= 0	 lambda= 223.488975	 levenbergIter= 1
iteration= 8	 chi2= 6061742.336272	 time= 0.000519493	 cumTime= 0.00547128	 edges= 1402	 schur= 0	 lambda= 74.496325	 levenbergIter= 1
iteration= 9	 chi2= 5844667.726463	 time= 0.000519177	 cumTime= 0.00599046	 edges= 1402	 schur= 0	 lambda= 24.832108	 levenbergIter= 1
iteration= 10	 chi2= 5637484.497617	 time= 0.000519263	 cumTime= 0.00650972	 edges= 1402	 schur= 0	 lambda= 8.277369	 levenbergIter= 1
iteration= 11	 chi2= 5425243.040401	 time= 0.000522855	 cumTime= 0.00703258	 edges= 1402	 schur= 0	 lambda= 2.759123	 levenbergIter= 1
iteration= 12	 chi2= 5264243.471467	 time= 0.000503762	 cumTime= 0.00753634	 edges= 1402	 schur= 0	 lambda= 0.919708	 levenbergIter= 1
iteration= 13	 chi2= 5137385.989498	 time= 0.000435001	 cumTime= 0.00797134	 edges= 1402	 schur= 0	 lambda= 0.306569	 levenbergIter= 1
iteration= 14	 chi2= 5051110.224167	 time= 0.000435244	 cumTime= 0.00840659	 edges= 1402	 schur= 0	 lambda= 0.102190	 levenbergIter= 1
iteration= 15	 chi2= 4942318.409186	 time= 0.000435218	 cumTime= 0.0088418	 edges= 1402	 schur= 0	 lambda= 0.034063	 levenbergIter= 1
iteration= 16	 chi2= 4837907.001983	 time= 0.000435068	 cumTime= 0.00927687	 edges= 1402	 schur= 0	 lambda= 0.011354	 levenbergIter= 1
iteration= 17	 chi2= 4673004.142642	 time= 0.000434778	 cumTime= 0.00971165	 edges= 1402	 schur= 0	 lambda= 0.003785	 levenbergIter= 1
iteration= 18	 chi2= 4449426.526615	 time= 0.000438196	 cumTime= 0.0101498	 edges= 1402	 schur= 0	 lambda= 0.001262	 levenbergIter= 1
iteration= 19	 chi2= 3973385.310078	 time= 0.000434567	 cumTime= 0.0105844	 edges= 1402	 schur= 0	 lambda= 0.000421	 levenbergIter= 1
iteration= 20	 chi2= 2361801.867656	 time= 0.000434547	 cumTime= 0.011019	 edges= 1402	 schur= 0	 lambda= 0.000140	 levenbergIter= 1
iteration= 21	 chi2= 1407201.072916	 time= 0.000410939	 cumTime= 0.0114299	 edges= 1402	 schur= 0	 lambda= 0.000047	 levenbergIter= 1
iteration= 22	 chi2= 1225311.653677	 time= 0.000373351	 cumTime= 0.0118032	 edges= 1402	 schur= 0	 lambda= 0.000031	 levenbergIter= 1
iteration= 23	 chi2= 1224758.010208	 time= 0.00117959	 cumTime= 0.0129828	 edges= 1402	 schur= 0	 lambda= 1427104.791486	 levenbergIter= 9
iteration= 24	 chi2= 1222153.585816	 time= 0.000374429	 cumTime= 0.0133573	 edges= 1402	 schur= 0	 lambda= 951403.194324	 levenbergIter= 1
iteration= 25	 chi2= 1220151.752588	 time= 0.000575745	 cumTime= 0.013933	 edges= 1402	 schur= 0	 lambda= 5074150.369727	 levenbergIter= 3
iteration= 26	 chi2= 1218274.743458	 time= 0.0003736	 cumTime= 0.0143066	 edges= 1402	 schur= 0	 lambda= 3382766.913152	 levenbergIter= 1
iteration= 27	 chi2= 1206895.182885	 time= 0.000575998	 cumTime= 0.0148826	 edges= 1402	 schur= 0	 lambda= 18041423.536808	 levenbergIter= 3
iteration= 28	 chi2= 1205341.650285	 time= 0.000475787	 cumTime= 0.0153584	 edges= 1402	 schur= 0	 lambda= 24055231.382411	 levenbergIter= 2
iteration= 29	 chi2= 1196693.739565	 time= 0.000328038	 cumTime= 0.0156864	 edges= 1402	 schur= 0	 lambda= 16036820.921607	 levenbergIter= 1
direct method costs time: 0.0223067 seconds.
Tcw=  0.997652  0.0587578 -0.0351798  -0.054183
-0.0584732   0.998248 0.00906807  -0.051229
  0.035651 -0.0069897    0.99934   0.141057
         0          0          0          1
*********** loop 4 ************
edges in graph: 1402
iteration= 0	 chi2= 7491847.477723	 time= 0.000748474	 cumTime= 0.000748474	 edges= 1402	 schur= 0	 lambda= 397252.334581	 levenbergIter= 1
iteration= 1	 chi2= 6557855.290093	 time= 0.000653204	 cumTime= 0.00140168	 edges= 1402	 schur= 0	 lambda= 132417.444860	 levenbergIter= 1
iteration= 2	 chi2= 5673808.446398	 time= 0.000643492	 cumTime= 0.00204517	 edges= 1402	 schur= 0	 lambda= 44139.148287	 levenbergIter= 1
iteration= 3	 chi2= 4565012.469547	 time= 0.000643989	 cumTime= 0.00268916	 edges= 1402	 schur= 0	 lambda= 14713.049429	 levenbergIter= 1
iteration= 4	 chi2= 2829297.412509	 time= 0.000633116	 cumTime= 0.00332227	 edges= 1402	 schur= 0	 lambda= 4904.349810	 levenbergIter= 1
iteration= 5	 chi2= 1913504.899716	 time= 0.000517169	 cumTime= 0.00383944	 edges= 1402	 schur= 0	 lambda= 1634.783270	 levenbergIter= 1
iteration= 6	 chi2= 1618694.067285	 time= 0.000521021	 cumTime= 0.00436046	 edges= 1402	 schur= 0	 lambda= 728.654097	 levenbergIter= 1
iteration= 7	 chi2= 1607378.256511	 time= 0.000517005	 cumTime= 0.00487747	 edges= 1402	 schur= 0	 lambda= 485.769398	 levenbergIter= 1
iteration= 8	 chi2= 1562462.492374	 time= 0.00149791	 cumTime= 0.00637538	 edges= 1402	 schur= 0	 lambda= 86931819878.871063	 levenbergIter= 8
iteration= 9	 chi2= 1561212.496415	 time= 0.000516393	 cumTime= 0.00689177	 edges= 1402	 schur= 0	 lambda= 57954546585.914040	 levenbergIter= 1
iteration= 10	 chi2= 1560587.249912	 time= 0.000498109	 cumTime= 0.00738988	 edges= 1402	 schur= 0	 lambda= 30176991782.787167	 levenbergIter= 1
iteration= 11	 chi2= 1560091.227612	 time= 0.000433055	 cumTime= 0.00782294	 edges= 1402	 schur= 0	 lambda= 10058997260.929054	 levenbergIter= 1
iteration= 12	 chi2= 1559641.017176	 time= 0.000432718	 cumTime= 0.00825565	 edges= 1402	 schur= 0	 lambda= 3352999086.976351	 levenbergIter= 1
iteration= 13	 chi2= 1559400.179395	 time= 0.000432605	 cumTime= 0.00868826	 edges= 1402	 schur= 0	 lambda= 1117666362.325450	 levenbergIter= 1
iteration= 14	 chi2= 1559048.255427	 time= 0.000432066	 cumTime= 0.00912032	 edges= 1402	 schur= 0	 lambda= 372555454.108483	 levenbergIter= 1
iteration= 15	 chi2= 1558342.034485	 time= 0.000432605	 cumTime= 0.00955293	 edges= 1402	 schur= 0	 lambda= 124185151.369494	 levenbergIter= 1
iteration= 16	 chi2= 1557243.868854	 time= 0.000432628	 cumTime= 0.00998556	 edges= 1402	 schur= 0	 lambda= 41395050.456498	 levenbergIter= 1
iteration= 17	 chi2= 1556380.140212	 time= 0.000552212	 cumTime= 0.0105378	 edges= 1402	 schur= 0	 lambda= 27596700.304332	 levenbergIter= 2
iteration= 18	 chi2= 1556117.304496	 time= 0.000666143	 cumTime= 0.0112039	 edges= 1402	 schur= 0	 lambda= 73591200.811552	 levenbergIter= 3
iteration= 19	 chi2= 1556117.073821	 time= 0.000976006	 cumTime= 0.0121799	 edges= 1402	 schur= 0	 lambda= 51443977988116.140625	 levenbergIter= 7
iteration= 20	 chi2= 1556116.920788	 time= 0.000371856	 cumTime= 0.0125518	 edges= 1402	 schur= 0	 lambda= 17147992662705.378906	 levenbergIter= 1
iteration= 21	 chi2= 1556116.920788	 time= 0.000873694	 cumTime= 0.0134255	 edges= 1402	 schur= 0	 lambda= 35961947108577910784.000000	 levenbergIter= 6
direct method costs time: 0.0188089 seconds.
Tcw=  0.995597  0.0785082 -0.0512126 -0.0576872
-0.0777067   0.996823  0.0174622 -0.0664859
 0.0524208 -0.0134057   0.998535   0.202252
         0          0          0          1
*********** loop 5 ************
edges in graph: 1402
iteration= 0	 chi2= 6811632.327202	 time= 0.000752507	 cumTime= 0.000752507	 edges= 1402	 schur= 0	 lambda= 269680.591723	 levenbergIter= 1
iteration= 1	 chi2= 6580154.523110	 time= 0.000651252	 cumTime= 0.00140376	 edges= 1402	 schur= 0	 lambda= 89893.530574	 levenbergIter= 1
iteration= 2	 chi2= 6489551.409912	 time= 0.000641536	 cumTime= 0.0020453	 edges= 1402	 schur= 0	 lambda= 29964.510191	 levenbergIter= 1
iteration= 3	 chi2= 6188916.273438	 time= 0.000641524	 cumTime= 0.00268682	 edges= 1402	 schur= 0	 lambda= 9988.170064	 levenbergIter= 1
iteration= 4	 chi2= 5763280.416543	 time= 0.000607579	 cumTime= 0.0032944	 edges= 1402	 schur= 0	 lambda= 3329.390021	 levenbergIter= 1
iteration= 5	 chi2= 5563292.424881	 time= 0.000516869	 cumTime= 0.00381127	 edges= 1402	 schur= 0	 lambda= 1109.796674	 levenbergIter= 1
iteration= 6	 chi2= 5467085.205965	 time= 0.000521933	 cumTime= 0.0043332	 edges= 1402	 schur= 0	 lambda= 369.932225	 levenbergIter= 1
iteration= 7	 chi2= 5045410.765883	 time= 0.000516561	 cumTime= 0.00484976	 edges= 1402	 schur= 0	 lambda= 123.310742	 levenbergIter= 1
iteration= 8	 chi2= 4890895.420715	 time= 0.000517288	 cumTime= 0.00536705	 edges= 1402	 schur= 0	 lambda= 47.033601	 levenbergIter= 1
iteration= 9	 chi2= 4880331.546214	 time= 0.000515669	 cumTime= 0.00588272	 edges= 1402	 schur= 0	 lambda= 31.355734	 levenbergIter= 1
iteration= 10	 chi2= 4880145.770882	 time= 0.0012293	 cumTime= 0.00711202	 edges= 1402	 schur= 0	 lambda= 684976.463660	 levenbergIter= 6
iteration= 11	 chi2= 4874904.462550	 time= 0.000436081	 cumTime= 0.0075481	 edges= 1402	 schur= 0	 lambda= 456650.975774	 levenbergIter= 1
iteration= 12	 chi2= 4874537.812220	 time= 0.000900784	 cumTime= 0.00844889	 edges= 1402	 schur= 0	 lambda= 311740399.461474	 levenbergIter= 5
iteration= 13	 chi2= 4872628.627136	 time= 0.000432374	 cumTime= 0.00888126	 edges= 1402	 schur= 0	 lambda= 103913466.487158	 levenbergIter= 1
iteration= 14	 chi2= 4872628.097592	 time= 0.00113465	 cumTime= 0.0100159	 edges= 1402	 schur= 0	 lambda= 72640778023492.000000	 levenbergIter= 7
iteration= 15	 chi2= 4872627.879060	 time= 0.000431932	 cumTime= 0.0104478	 edges= 1402	 schur= 0	 lambda= 48427185348994.664062	 levenbergIter= 1
iteration= 16	 chi2= 4872627.855692	 time= 0.000795701	 cumTime= 0.0112435	 edges= 1402	 schur= 0	 lambda= 1033113287445219.500000	 levenbergIter= 4
iteration= 17	 chi2= 4872627.765096	 time= 0.000571611	 cumTime= 0.0118152	 edges= 1402	 schur= 0	 lambda= 2754968766520585.000000	 levenbergIter= 3
iteration= 18	 chi2= 4872627.565836	 time= 0.000471919	 cumTime= 0.0122871	 edges= 1402	 schur= 0	 lambda= 1836645844347056.500000	 levenbergIter= 2
iteration= 19	 chi2= 4872627.565836	 time= 0.000772497	 cumTime= 0.0130596	 edges= 1402	 schur= 0	 lambda= 60183211027564347392.000000	 levenbergIter= 5
direct method costs time: 0.0181874 seconds.
Tcw=   0.995694   0.0868309  -0.0324615   -0.208598
 -0.0869428    0.996211 -0.00204789   0.0937473
  0.0321607  0.00486137    0.999471    0.246901
          0           0           0           1
*********** loop 6 ************
edges in graph: 1402
iteration= 0	 chi2= 7928699.317460	 time= 0.000912469	 cumTime= 0.000912469	 edges= 1402	 schur= 0	 lambda= 199616.574791	 levenbergIter= 1
iteration= 1	 chi2= 7755798.242776	 time= 0.000646986	 cumTime= 0.00155945	 edges= 1402	 schur= 0	 lambda= 66538.858264	 levenbergIter= 1
iteration= 2	 chi2= 7543664.737807	 time= 0.000642943	 cumTime= 0.0022024	 edges= 1402	 schur= 0	 lambda= 22179.619421	 levenbergIter= 1
iteration= 3	 chi2= 7485356.894104	 time= 0.000642122	 cumTime= 0.00284452	 edges= 1402	 schur= 0	 lambda= 7393.206474	 levenbergIter= 1
iteration= 4	 chi2= 7432757.242352	 time= 0.000641602	 cumTime= 0.00348612	 edges= 1402	 schur= 0	 lambda= 2464.402158	 levenbergIter= 1
iteration= 5	 chi2= 7355677.978479	 time= 0.000642367	 cumTime= 0.00412849	 edges= 1402	 schur= 0	 lambda= 821.467386	 levenbergIter= 1
iteration= 6	 chi2= 7224185.509870	 time= 0.000540844	 cumTime= 0.00466933	 edges= 1402	 schur= 0	 lambda= 273.822462	 levenbergIter= 1
iteration= 7	 chi2= 7122505.620093	 time= 0.000517482	 cumTime= 0.00518681	 edges= 1402	 schur= 0	 lambda= 91.274154	 levenbergIter= 1
iteration= 8	 chi2= 7066632.695692	 time= 0.000516856	 cumTime= 0.00570367	 edges= 1402	 schur= 0	 lambda= 30.424718	 levenbergIter= 1
iteration= 9	 chi2= 7061683.354334	 time= 0.000520503	 cumTime= 0.00622417	 edges= 1402	 schur= 0	 lambda= 20.283145	 levenbergIter= 1
iteration= 10	 chi2= 7061552.728401	 time= 0.00163387	 cumTime= 0.00785804	 edges= 1402	 schur= 0	 lambda= 464615711273.290833	 levenbergIter= 9
iteration= 11	 chi2= 7061252.173599	 time= 0.000520618	 cumTime= 0.00837866	 edges= 1402	 schur= 0	 lambda= 240379334294.572052	 levenbergIter= 1
iteration= 12	 chi2= 7061239.156459	 time= 0.000434057	 cumTime= 0.00881272	 edges= 1402	 schur= 0	 lambda= 160252889529.714691	 levenbergIter= 1
iteration= 13	 chi2= 7061180.403825	 time= 0.000672917	 cumTime= 0.00948563	 edges= 1402	 schur= 0	 lambda= 854682077491.811646	 levenbergIter= 3
iteration= 14	 chi2= 7061142.368735	 time= 0.000549184	 cumTime= 0.0100348	 edges= 1402	 schur= 0	 lambda= 1139576103322.415527	 levenbergIter= 2
iteration= 15	 chi2= 7061138.455047	 time= 0.000666032	 cumTime= 0.0107008	 edges= 1402	 schur= 0	 lambda= 6077739217719.548828	 levenbergIter= 3
iteration= 16	 chi2= 7061130.287448	 time= 0.000433419	 cumTime= 0.0111343	 edges= 1402	 schur= 0	 lambda= 4051826145146.365723	 levenbergIter= 1
iteration= 17	 chi2= 7061122.977106	 time= 0.000549705	 cumTime= 0.011684	 edges= 1402	 schur= 0	 lambda= 5402434860195.154297	 levenbergIter= 2
iteration= 18	 chi2= 7061122.520741	 time= 0.000980642	 cumTime= 0.0126646	 edges= 1402	 schur= 0	 lambda= 59008995166291600.000000	 levenbergIter= 6
iteration= 19	 chi2= 7061122.520741	 time= 0.000572262	 cumTime= 0.0132369	 edges= 1402	 schur= 0	 lambda= 3776575690642662400.000000	 levenbergIter= 3
direct method costs time: 0.0190083 seconds.
Tcw=    0.99546    0.094895  0.00739367   -0.428742
 -0.0947181    0.995274  -0.0214247    0.236609
-0.00939182   0.0206271    0.999743    0.325207
          0           0           0           1
*********** loop 7 ************
edges in graph: 1402
iteration= 0	 chi2= 8437539.234503	 time= 0.000910577	 cumTime= 0.000910577	 edges= 1402	 schur= 0	 lambda= 243676.298792	 levenbergIter= 1
iteration= 1	 chi2= 8389323.224253	 time= 0.00064568	 cumTime= 0.00155626	 edges= 1402	 schur= 0	 lambda= 81225.432931	 levenbergIter= 1
iteration= 2	 chi2= 8301301.288900	 time= 0.000643481	 cumTime= 0.00219974	 edges= 1402	 schur= 0	 lambda= 27075.144310	 levenbergIter= 1
iteration= 3	 chi2= 8139610.593232	 time= 0.000642379	 cumTime= 0.00284212	 edges= 1402	 schur= 0	 lambda= 9025.048103	 levenbergIter= 1
iteration= 4	 chi2= 8092396.356961	 time= 0.000647879	 cumTime= 0.00349	 edges= 1402	 schur= 0	 lambda= 3008.349368	 levenbergIter= 1
iteration= 5	 chi2= 8045445.410876	 time= 0.000641909	 cumTime= 0.0041319	 edges= 1402	 schur= 0	 lambda= 1002.783123	 levenbergIter= 1
iteration= 6	 chi2= 8001048.609022	 time= 0.000576728	 cumTime= 0.00470863	 edges= 1402	 schur= 0	 lambda= 334.261041	 levenbergIter= 1
iteration= 7	 chi2= 7973760.785844	 time= 0.00051751	 cumTime= 0.00522614	 edges= 1402	 schur= 0	 lambda= 111.420347	 levenbergIter= 1
iteration= 8	 chi2= 7926942.921971	 time= 0.000517125	 cumTime= 0.00574327	 edges= 1402	 schur= 0	 lambda= 37.140116	 levenbergIter= 1
iteration= 9	 chi2= 7908140.405514	 time= 0.000521569	 cumTime= 0.00626484	 edges= 1402	 schur= 0	 lambda= 12.380039	 levenbergIter= 1
iteration= 10	 chi2= 7889394.652899	 time= 0.000517242	 cumTime= 0.00678208	 edges= 1402	 schur= 0	 lambda= 4.126680	 levenbergIter= 1
iteration= 11	 chi2= 7851582.408679	 time= 0.000516871	 cumTime= 0.00729895	 edges= 1402	 schur= 0	 lambda= 1.375560	 levenbergIter= 1
iteration= 12	 chi2= 7820763.314198	 time= 0.000516679	 cumTime= 0.00781563	 edges= 1402	 schur= 0	 lambda= 0.458520	 levenbergIter= 1
iteration= 13	 chi2= 7813221.763484	 time= 0.000508096	 cumTime= 0.00832372	 edges= 1402	 schur= 0	 lambda= 0.305680	 levenbergIter= 1
iteration= 14	 chi2= 7788387.024082	 time= 0.000432315	 cumTime= 0.00875604	 edges= 1402	 schur= 0	 lambda= 0.101893	 levenbergIter= 1
iteration= 15	 chi2= 7757327.593048	 time= 0.000435935	 cumTime= 0.00919197	 edges= 1402	 schur= 0	 lambda= 0.033964	 levenbergIter= 1
iteration= 16	 chi2= 7737954.680460	 time= 0.000432867	 cumTime= 0.00962484	 edges= 1402	 schur= 0	 lambda= 0.011321	 levenbergIter= 1
iteration= 17	 chi2= 7706970.147861	 time= 0.000432038	 cumTime= 0.0100569	 edges= 1402	 schur= 0	 lambda= 0.003774	 levenbergIter= 1
iteration= 18	 chi2= 7693565.230902	 time= 0.000431903	 cumTime= 0.0104888	 edges= 1402	 schur= 0	 lambda= 0.001258	 levenbergIter= 1
iteration= 19	 chi2= 7681870.404585	 time= 0.000431953	 cumTime= 0.0109207	 edges= 1402	 schur= 0	 lambda= 0.000419	 levenbergIter= 1
iteration= 20	 chi2= 7676432.816041	 time= 0.000432092	 cumTime= 0.0113528	 edges= 1402	 schur= 0	 lambda= 0.000140	 levenbergIter= 1
iteration= 21	 chi2= 7671985.528550	 time= 0.000432063	 cumTime= 0.0117849	 edges= 1402	 schur= 0	 lambda= 0.000047	 levenbergIter= 1
iteration= 22	 chi2= 7667366.173083	 time= 0.000416933	 cumTime= 0.0122018	 edges= 1402	 schur= 0	 lambda= 0.000016	 levenbergIter= 1
iteration= 23	 chi2= 7662823.154996	 time= 0.000371033	 cumTime= 0.0125729	 edges= 1402	 schur= 0	 lambda= 0.000005	 levenbergIter= 1
iteration= 24	 chi2= 7659343.840542	 time= 0.00037062	 cumTime= 0.0129435	 edges= 1402	 schur= 0	 lambda= 0.000002	 levenbergIter= 1
iteration= 25	 chi2= 7659343.840542	 time= 0.00127705	 cumTime= 0.0142205	 edges= 1402	 schur= 0	 lambda= 62170295762.145447	 levenbergIter= 10
direct method costs time: 0.0205604 seconds.
Tcw=   0.995356    0.095103  -0.0148809   -0.340816
 -0.0952447    0.995412 -0.00912524    0.207406
  0.0139448   0.0105002    0.999848    0.365317
          0           0           0           1
*********** loop 8 ************
edges in graph: 1402
iteration= 0	 chi2= 8612213.046869	 time= 0.000990377	 cumTime= 0.000990377	 edges= 1402	 schur= 0	 lambda= 180889.191265	 levenbergIter= 1
iteration= 1	 chi2= 8510649.250442	 time= 0.000645923	 cumTime= 0.0016363	 edges= 1402	 schur= 0	 lambda= 60296.397088	 levenbergIter= 1
iteration= 2	 chi2= 8480848.275766	 time= 0.000641791	 cumTime= 0.00227809	 edges= 1402	 schur= 0	 lambda= 20098.799029	 levenbergIter= 1
iteration= 3	 chi2= 8470569.083189	 time= 0.000648903	 cumTime= 0.00292699	 edges= 1402	 schur= 0	 lambda= 6699.599676	 levenbergIter= 1
iteration= 4	 chi2= 8458735.042317	 time= 0.000641074	 cumTime= 0.00356807	 edges= 1402	 schur= 0	 lambda= 2233.199892	 levenbergIter= 1
iteration= 5	 chi2= 8448058.215588	 time= 0.000640722	 cumTime= 0.00420879	 edges= 1402	 schur= 0	 lambda= 744.399964	 levenbergIter= 1
iteration= 6	 chi2= 8424707.604723	 time= 0.000629864	 cumTime= 0.00483865	 edges= 1402	 schur= 0	 lambda= 248.133321	 levenbergIter= 1
iteration= 7	 chi2= 8407773.249449	 time= 0.00051538	 cumTime= 0.00535403	 edges= 1402	 schur= 0	 lambda= 82.711107	 levenbergIter= 1
iteration= 8	 chi2= 8388934.829240	 time= 0.000520715	 cumTime= 0.00587475	 edges= 1402	 schur= 0	 lambda= 27.570369	 levenbergIter= 1
iteration= 9	 chi2= 8372101.766152	 time= 0.000515195	 cumTime= 0.00638994	 edges= 1402	 schur= 0	 lambda= 9.190123	 levenbergIter= 1
iteration= 10	 chi2= 8359674.347141	 time= 0.000515094	 cumTime= 0.00690504	 edges= 1402	 schur= 0	 lambda= 3.063374	 levenbergIter= 1
iteration= 11	 chi2= 8314001.542214	 time= 0.000514859	 cumTime= 0.0074199	 edges= 1402	 schur= 0	 lambda= 1.021125	 levenbergIter= 1
iteration= 12	 chi2= 8269055.228943	 time= 0.000514416	 cumTime= 0.00793431	 edges= 1402	 schur= 0	 lambda= 0.340375	 levenbergIter= 1
iteration= 13	 chi2= 8232415.617513	 time= 0.000514405	 cumTime= 0.00844872	 edges= 1402	 schur= 0	 lambda= 0.113458	 levenbergIter= 1
iteration= 14	 chi2= 8203175.078067	 time= 0.00043413	 cumTime= 0.00888285	 edges= 1402	 schur= 0	 lambda= 0.037819	 levenbergIter= 1
iteration= 15	 chi2= 8172279.427651	 time= 0.000430993	 cumTime= 0.00931384	 edges= 1402	 schur= 0	 lambda= 0.012606	 levenbergIter= 1
iteration= 16	 chi2= 8141880.320204	 time= 0.000430443	 cumTime= 0.00974428	 edges= 1402	 schur= 0	 lambda= 0.004202	 levenbergIter= 1
iteration= 17	 chi2= 8106376.512742	 time= 0.000430813	 cumTime= 0.0101751	 edges= 1402	 schur= 0	 lambda= 0.001401	 levenbergIter= 1
iteration= 18	 chi2= 7951574.187300	 time= 0.000430236	 cumTime= 0.0106053	 edges= 1402	 schur= 0	 lambda= 0.000467	 levenbergIter= 1
iteration= 19	 chi2= 7870008.835634	 time= 0.000429854	 cumTime= 0.0110352	 edges= 1402	 schur= 0	 lambda= 0.000156	 levenbergIter= 1
iteration= 20	 chi2= 7843585.075304	 time= 0.000428444	 cumTime= 0.0114636	 edges= 1402	 schur= 0	 lambda= 0.000052	 levenbergIter= 1
iteration= 21	 chi2= 7805648.041689	 time= 0.000430766	 cumTime= 0.0118944	 edges= 1402	 schur= 0	 lambda= 0.000017	 levenbergIter= 1
iteration= 22	 chi2= 7760518.723738	 time= 0.000440823	 cumTime= 0.0123352	 edges= 1402	 schur= 0	 lambda= 0.000006	 levenbergIter= 1
iteration= 23	 chi2= 7713627.879290	 time= 0.000367868	 cumTime= 0.0127031	 edges= 1402	 schur= 0	 lambda= 0.000002	 levenbergIter= 1
iteration= 24	 chi2= 7666417.114061	 time= 0.000367788	 cumTime= 0.0130709	 edges= 1402	 schur= 0	 lambda= 0.000001	 levenbergIter= 1
iteration= 25	 chi2= 7612743.598936	 time= 0.000368045	 cumTime= 0.0134389	 edges= 1402	 schur= 0	 lambda= 0.000000	 levenbergIter= 1
iteration= 26	 chi2= 7586577.869319	 time= 0.00036725	 cumTime= 0.0138062	 edges= 1402	 schur= 0	 lambda= 0.000000	 levenbergIter= 1
iteration= 27	 chi2= 7542643.224659	 time= 0.000367743	 cumTime= 0.0141739	 edges= 1402	 schur= 0	 lambda= 0.000000	 levenbergIter= 1
iteration= 28	 chi2= 7507932.791750	 time= 0.000368043	 cumTime= 0.014542	 edges= 1402	 schur= 0	 lambda= 0.000000	 levenbergIter= 1
iteration= 29	 chi2= 7453918.989195	 time= 0.000370546	 cumTime= 0.0149125	 edges= 1402	 schur= 0	 lambda= 0.000000	 levenbergIter= 1
direct method costs time: 0.0217702 seconds.
Tcw=  0.993005   0.091311 -0.0748564  0.0172835
-0.0893834   0.995583   0.028716 0.00386762
 0.0771479 -0.0218242   0.996781   0.178906
         0          0          0          1
*********** loop 9 ************

 视觉SLAM十四讲CH8代码解析及课后习题详解_第3张图片
将点的大小变小后:

cv::circle ( img_show, cv::Point2d ( pixel_prev ( 0,0 ), pixel_prev ( 1,0 ) ), 2, cv::Scalar ( b,g,r ), 1 );

cv::circle ( img_show, cv::Point2d ( pixel_now ( 0,0 ), pixel_now ( 1,0 ) +color.rows ), 2, cv::Scalar ( b,g,r ), 1 );

视觉SLAM十四讲CH8代码解析及课后习题详解_第4张图片

下面的是第二版的代码:

optical_flow.cpp

#include 
#include 
#include 
#include 
#include 

using namespace std;
using namespace cv;

string file_1 = "../LK1.png";  // first image
string file_2 = "../LK2.png";  // second image

/// Optical flow tracker and interface  光流跟踪
class OpticalFlowTracker {
public:
    OpticalFlowTracker(
        const Mat &img1_,//图像1
        const Mat &img2_,//图像2
        const vector &kp1_,//关键点1  -> 图像 1
        vector &kp2_,//关键点2  -> 图像 2
        vector &success_,//true if a keypoint is tracked successfully 关键点跟踪是正确的
        bool inverse_ = true, bool has_initial_ = false) ://bool型变量 判断是否采用反向光流
        img1(img1_), img2(img2_), kp1(kp1_), kp2(kp2_), success(success_), inverse(inverse_),
        has_initial(has_initial_) {}

    void calculateOpticalFlow(const Range &range);//定义calculateOpticalFlow(计算光流)函数
    //Range中有两个关键的变量start和end  Range可以用来表示矩阵的多个连续的行或列
    //Range表示范围从start到end,包含start,但不包含end

private:
    const Mat &img1;
    const Mat &img2;
    const vector &kp1;
    vector &kp2;
    vector &success;
    bool inverse = true;
    bool has_initial = false;
};

/**
 * single level optical flow
 * @param [in] img1 the first image
 * @param [in] img2 the second image
 * @param [in] kp1 keypoints in img1
 * @param [in|out] kp2 keypoints in img2, if empty, use initial guess in kp1
 * @param [out] success true if a keypoint is tracked successfully
 * @param [in] inverse use inverse formulation?
 */
void OpticalFlowSingleLevel(
    const Mat &img1,
    const Mat &img2,
    const vector &kp1,
    vector &kp2,
    vector &success,
    bool inverse = false,//use inverse formulation?
    bool has_initial_guess = false
);//定义OpticalFlowSingleLevel函数 单层光流法

/**
 * multi level optical flow, scale of pyramid is set to 2 by default
 * the image pyramid will be create inside the function
 * @param [in] img1 the first pyramid
 * @param [in] img2 the second pyramid
 * @param [in] kp1 keypoints in img1
 * @param [out] kp2 keypoints in img2
 * @param [out] success true if a keypoint is tracked successfully
 * @param [in] inverse set true to enable inverse formulation
 */
void OpticalFlowMultiLevel(
    const Mat &img1,
    const Mat &img2,
    const vector &kp1,
    vector &kp2,
    vector &success,
    bool inverse = false
);//定义OpticalFlowMultiLevel 多层光流法

/**
 * get a gray scale value from reference image (bi-linear interpolated)
 * @param img
 * @param x
 * @param y
 * @return the interpolated value of this pixel
 */

//双线性插值求灰度值
inline float GetPixelValue(const cv::Mat &img, float x, float y) // * get a gray scale value from reference image (bi-linear interpolated)  * @param img * @param x * @param y  * @return the interpolated value of this pixel
//inline表示内联函数,它是为了解决一些频繁调用的小函数大量消耗栈空间的问题而引入的
{
    // boundary check(边界检验)
    if (x < 0) x = 0;
    if (y < 0) y = 0;
    if (x >= img.cols) x = img.cols - 1;
    if (y >= img.rows) y = img.rows - 1;
    uchar *data = &img.data[int(y) * img.step + int(x)];
    float xx = x - floor(x);
    float yy = y - floor(y);
    return float(
        (1 - xx) * (1 - yy) * data[0] +
        xx * (1 - yy) * data[1] +
        (1 - xx) * yy * data[img.step] +
        xx * yy * data[img.step + 1]
    );
}

int main(int argc, char **argv) {

    // images, note they are CV_8UC1, not CV_8UC3
    Mat img1 = imread(file_1, 0);//0表示返回灰度图
    Mat img2 = imread(file_2, 0);//0表示返回灰度图

    // key points, using GFTT here.
    vector kp1;
    Ptr detector = GFTTDetector::create(500, 0.01, 20); // maximum 500 keypoints
    //GFTTDetector三个参数从左到右依次为
    //maxCorners表示最大角点数目。在此处为500。
    //qualityLevel表示角点可以接受的最小特征值,一般0.1或者0.01,不超过1。在此处为0.01。
    //minDistance表示角点之间的最小距离。在此处为20。
    detector->detect(img1, kp1);

    // now lets track these key points in the second image
    // first use single level LK in the validation picture
    
    //利用OpenCV中的自带函数提取图像1中的GFTT角点
    //然后利用calcOpticalFlowPyrLK()函数跟踪其在图像2中的位置(u,v)
    vector kp2_single;
    vector success_single;
    OpticalFlowSingleLevel(img1, img2, kp1, kp2_single, success_single);

    // then test multi-level LK
    vector kp2_multi;
    vector success_multi;
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();//开始计时
    OpticalFlowMultiLevel(img1, img2, kp1, kp2_multi, success_multi, true);//调用opencv  OpticalFlowMultiLevel函数
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();//计时结束
    auto time_used = chrono::duration_cast>(t2 - t1);//计算耗时
    cout << "optical flow by gauss-newton: " << time_used.count() << endl;//输出使用高斯牛顿法计算光流使用时间

    // use opencv's flow for validation
    vector pt1, pt2;
    for (auto &kp: kp1) pt1.push_back(kp.pt);
    vector status;//status中元素表示对应角点是否被正确跟踪到,1为正确跟踪,0为错误跟踪
    vector error; //error表示误差
    t1 = chrono::steady_clock::now();//开始计时
    cv::calcOpticalFlowPyrLK(img1, img2, pt1, pt2, status, error);//调用opencv  calcOpticalFlowPyrLK函数来求解min = || I1(x,y) - I2(x + δx, y + δy) ||2 视觉slam十四讲p214式8.10
    t2 = chrono::steady_clock::now();//计时结束
    time_used = chrono::duration_cast>(t2 - t1);//计算耗时
    cout << "optical flow by opencv: " << time_used.count() << endl;//输出使用opencv函数计算光流的耗时

    // plot the differences of those functions
    Mat img2_single;//
    cv::cvtColor(img2, img2_single, CV_GRAY2BGR);//将灰度图转换成彩色图,彩色图中BGR各颜色通道值为原先灰度值
    for (int i = 0; i < kp2_single.size(); i++) {
        if (success_single[i]) {
            cv::circle(img2_single, kp2_single[i].pt, 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_single, kp1[i].pt, kp2_single[i].pt, cv::Scalar(0, 250, 0));
        }
    }
 
    Mat img2_multi;
    cv::cvtColor(img2, img2_multi, CV_GRAY2BGR);
    for (int i = 0; i < kp2_multi.size(); i++) {
        if (success_multi[i]) {
            cv::circle(img2_multi, kp2_multi[i].pt, 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_multi, kp1[i].pt, kp2_multi[i].pt, cv::Scalar(0, 250, 0));
        }
    }
    

    Mat img2_CV;
    cv::cvtColor(img2, img2_CV, CV_GRAY2BGR);
    for (int i = 0; i < pt2.size(); i++) {
        if (status[i]) {
            cv::circle(img2_CV, pt2[i], 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_CV, pt1[i], pt2[i], cv::Scalar(0, 250, 0));
        }
    }
    
     //画出角点连线图
    Mat imgMatches(img1.rows, img1.cols * 2, CV_8UC1);  //定义*行*列的Mat型变量
    Rect rect1 = Rect(0, 0, img1.cols, img1.rows);
    //Rect()有四个参数,第1个参数表示初始列,第2个参数表示初始行,
    //第3个参数表示在初始列的基础上还要加上多少列(即矩形区域的宽度),第4个参数表示在初始行的基础上还要加上多少行(即矩形区域的高度)
    Rect rect2 = Rect(img1.cols, 0, img2.cols, img2.rows);
    img1.copyTo(imgMatches(rect1));
    img2.copyTo(imgMatches(rect2));

    cv::imshow("tracked single level", img2_single);
    cv::imshow("tracked multi level", img2_multi);
    cv::imshow("tracked by opencv", img2_CV);
    
    cv::waitKey(0);

    return 0;
}

void OpticalFlowSingleLevel(
    const Mat &img1,
    const Mat &img2,
    const vector &kp1,
    vector &kp2,
    vector &success,
    bool inverse, bool has_initial) 
{
    kp2.resize(kp1.size());
    success.resize(kp1.size());
    //定义了一个OpticalFlowTracker类型的变量tracker,并进行了初始化
    OpticalFlowTracker tracker(img1, img2, kp1, kp2, success, inverse, has_initial);
    parallel_for_(Range(0, kp1.size()),
                  std::bind(&OpticalFlowTracker::calculateOpticalFlow, &tracker, placeholders::_1));
    //parallel_for_()实现并行调用OpticalFlowTracker::calculateOpticalFlow()的功能
}
//使用高斯牛顿法求解图像2中相应的角点坐标
void OpticalFlowTracker::calculateOpticalFlow(const Range &range) {
    // parameters
    int half_patch_size = 4;
    int iterations = 10;//最大迭代次数
    for (size_t i = range.start; i < range.end; i++)//对图像1中的每个GFTT角点进行高斯牛顿优化
    {
        auto kp = kp1[i];
        double dx = 0, dy = 0; // dx,dy need to be estimated 优化变量

        if (has_initial)//如果kp2进行了初始化,则执行
        {
            dx = kp2[i].pt.x - kp.pt.x;
            dy = kp2[i].pt.y - kp.pt.y;
        }

        double cost = 0, lastCost = 0;
        bool succ = true; // indicate if this point succeeded

        // Gauss-Newton iterations
        Eigen::Matrix2d H = Eigen::Matrix2d::Zero();    // hessian 将H初始化为0
        Eigen::Vector2d b = Eigen::Vector2d::Zero();    // bias 将b初始化为0
        Eigen::Vector2d J;  // jacobian 雅克比矩阵J
        for (int iter = 0; iter < iterations; iter++) {
            if (inverse == false) 
            {
                H = Eigen::Matrix2d::Zero();
                b = Eigen::Vector2d::Zero();
            } 
            
            else 
            {
                // only reset b 只重置矩阵b。在反向光流中,海塞矩阵H在整个高斯牛顿迭代过程中均保持不变
                b = Eigen::Vector2d::Zero();
            }

            cost = 0;//代价初始化为0 

            // compute cost and jacobian 计算代价和雅克比矩阵
            for (int x = -half_patch_size; x < half_patch_size; x++)
                for (int y = -half_patch_size; y < half_patch_size; y++)  //x,y是patch内遍历
                {
                    //(u, v)表示图像中的角点u表示x坐标,v表示y坐标
                    double error = GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y) -
                                   GetPixelValue(img2, kp.pt.x + x + dx, kp.pt.y + y + dy);//误差 eij = I1(u+i,v+j)-I2(U+I+Δu,v+j+Δv)
                    //i  -> kp.pt.x
                    //j  -> kp.pt.y
                    //u  -> x
                    //v  -> y              
                    //Δu -> dx
                    //Δv -> dy
                    // Jacobian
                    
                    if (inverse == false) 
                    {
                        J = -1.0 * Eigen::Vector2d(
                            0.5 * (GetPixelValue(img2, kp.pt.x + dx + x + 1, kp.pt.y + dy + y) -
                                   GetPixelValue(img2, kp.pt.x + dx + x - 1, kp.pt.y + dy + y)),
                            0.5 * (GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y + 1) -
                                   GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y - 1))
                        );//dx,dy是优化变量 即(Δu,Δv) 计算雅克比矩阵
                    //相当于 J = - [ {I2( u + i + Δu + 1,v + j + Δv)-I2(u + i + Δu - 1,v + j + Δv)}/2,I2( u + i + Δu ,v + j + Δv + 1)-I2( u + i + Δu,v + j + Δv - 1)}/2]T T表示转置
                    //I2 -> 图像2的灰度信息
                    //u  -> x
                    //v  -> y
                    //Δu -> dx
                    //Δv -> dy
                    //i  -> kp.pt.x
                    //j  -> kp.pt.y
                    } else if (iter == 0) //采用反向光流时
                    {
                        // in inverse mode, J keeps same for all iterations
                        // NOTE this J does not change when dx, dy is updated, so we can store it and only compute error
                        J = -1.0 * Eigen::Vector2d(
                            0.5 * (GetPixelValue(img1, kp.pt.x + x + 1, kp.pt.y + y) -
                                   GetPixelValue(img1, kp.pt.x + x - 1, kp.pt.y + y)),
                            0.5 * (GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y + 1) -
                                   GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y - 1))
                        );//dx,dy是优化变量 即(Δu,Δv) 计算雅克比矩阵
                    //相当于 J = - [ {I1( u + i + 1,v + j )-I1(u + i - 1,v + j )}/2,I1( u + i,v + j + 1)-I1( u + i ,v + j - 1)}/2]T T表示转置
                    //I2 -> 图像2的灰度信息
                    //i -> x
                    //j -> y
                    //u  -> kp.pt.x
                    //v  -> kp.pt.y
                    }
                    // compute H, b and set cost;
                    b += -error * J;//b = -Jij * eij(累加和)
                    cost += error * error;//cost = || eij ||2 2范数
                    if (inverse == false || iter == 0) {
                        // also update H
                        H += J * J.transpose();//H = Jij Jij(T)(累加和)
                    }
                }

            // compute update
            //求解增量方程,计算更新量
            Eigen::Vector2d update = H.ldlt().solve(b);

            if (std::isnan(update[0]))//计算出来的更新量是非数字,光流跟踪失败,退出GN迭代
            {
                // sometimes occurred when we have a black or white patch and H is irreversible
                cout << "update is nan" << endl;
                succ = false;
                break;
            }

            if (iter > 0 && cost > lastCost) //代价不再减小,退出GN迭代
            {
                break;
            }

            // update dx, dy 更新优化变量和lastCost
            dx += update[0];
            dy += update[1];
            lastCost = cost;
            succ = true;

            if (update.norm() < 1e-2) //更新量的模小于1e-2,退出GN迭代
            {
                // converge
                break;
            }
        }//GN法进行完一次迭代

        success[i] = succ;

        // set kp2
        kp2[i].pt = kp.pt + Point2f(dx, dy);
    }
}//对图像1中的所有角点都完成了光流跟踪

void OpticalFlowMultiLevel(
    const Mat &img1,
    const Mat &img2,
    const vector &kp1,
    vector &kp2,
    vector &success,
    bool inverse) {

    // parameters
    int pyramids = 4;//金字塔层数为4
    double pyramid_scale = 0.5;//每层之间的缩放因子设为0.5
    double scales[] = {1.0, 0.5, 0.25, 0.125};

    // create pyramids 创建图像金字塔
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();//开始计时
    vector pyr1, pyr2; // image pyramids pyr1 -> 图像1的金字塔 pyr2 -> 图像2的金字塔
    for (int i = 0; i < pyramids; i++) {
        if (i == 0) 
        {
            pyr1.push_back(img1);
            pyr2.push_back(img2);
        } 
        else 
        {
            Mat img1_pyr, img2_pyr;
            //将图像pyr1[i-1]的宽和高各缩放0.5倍得到图像img1_pyr
            cv::resize(pyr1[i - 1], img1_pyr,
                       cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
            //将图像pyr2[i-1]的宽和高各缩放0.5倍得到图像img2_pyr
            cv::resize(pyr2[i - 1], img2_pyr,
                       cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
            pyr1.push_back(img1_pyr);
            pyr2.push_back(img2_pyr);
        }
    }
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();//计时结束
    auto time_used = chrono::duration_cast>(t2 - t1);//计算耗时
    cout << "build pyramid time: " << time_used.count() << endl;//输出构建图像金字塔的耗时

    // coarse-to-fine LK tracking in pyramids 由粗至精的光流跟踪
    vector kp1_pyr, kp2_pyr;
    for (auto &kp:kp1) 
    {
        auto kp_top = kp;//这里意思大概是视觉slam十四讲p215的把上一层的追踪结果作为下一层光流的初始值
        kp_top.pt *= scales[pyramids - 1];//
        kp1_pyr.push_back(kp_top);//最顶层图像1的角点坐标
        kp2_pyr.push_back(kp_top);//最顶层图像2的角点坐标:用图像1的初始化图像2的
    }

    for (int level = pyramids - 1; level >= 0; level--)//从最顶层开始进行光流追踪
    {
        // from coarse to fine
        success.clear();
        t1 = chrono::steady_clock::now();//开始计时
        OpticalFlowSingleLevel(pyr1[level], pyr2[level], kp1_pyr, kp2_pyr, success, inverse, true);
        //has_initial设置为true,表示图像2中的角点kp2_pyr进行了初始化
        t2 = chrono::steady_clock::now();//计时结束
        auto time_used = chrono::duration_cast>(t2 - t1);//计算耗时
        cout << "track pyr " << level << " cost time: " << time_used.count() << endl;//输出光流跟踪耗时

        if (level > 0) 
        {
            for (auto &kp: kp1_pyr)
                kp.pt /= pyramid_scale;//pyramidScale等于0.5,相当于乘了2
            for (auto &kp: kp2_pyr)
                kp.pt /= pyramid_scale;//pyramidScale等于0.5,相当于乘了2
        }
    }

    for (auto &kp: kp2_pyr)
        kp2.push_back(kp);//存输出kp2
}

CMakeLists.txt 

cmake_minimum_required(VERSION 2.8)
project(ch8)

set(CMAKE_BUILD_TYPE "Release")
add_definitions("-DENABLE_SSE")
set(CMAKE_CXX_FLAGS "-std=c++14 ${SSE_FLAGS} -g -O3 -march=native")
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
find_package(OpenCV 3 REQUIRED)
find_package(G2O REQUIRED)
find_package(Sophus REQUIRED)
find_package(Pangolin REQUIRED)



include_directories(
        ${OpenCV_INCLUDE_DIRS}
        ${G2O_INCLUDE_DIRS}
        ${Sophus_INCLUDE_DIRS}
        "/usr/include/eigen3/"
        ${Pangolin_INCLUDE_DIRS}
)

add_executable(optical_flow optical_flow.cpp)
target_link_libraries(optical_flow ${OpenCV_LIBS} fmt)


add_executable(direct_method direct_method.cpp)
target_link_libraries(direct_method ${OpenCV_LIBS} ${Pangolin_LIBRARIES} fmt)

执行结果:

./optical_flow

build pyramid time: 0.000126517
track pyr 3 cost time: 0.000207429
track pyr 2 cost time: 0.000199243
track pyr 1 cost time: 0.000172433
track pyr 0 cost time: 0.000155421
optical flow by gauss-newton: 0.000939911
optical flow by opencv: 0.00107912

direct_method.cpp

#include 
#include 
#include 
#include 

using namespace std;

typedef vector> VecVector2d;

// Camera intrinsics 相机内参
double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;
// baseline   双目相机基线
double baseline = 0.573;
// paths 图像路径
string left_file = "../left.png";
string disparity_file = "../disparity.png";
boost::format fmt_others("../%06d.png");    // other files

// useful typedefs
typedef Eigen::Matrix Matrix6d;
typedef Eigen::Matrix Matrix26d;
typedef Eigen::Matrix Vector6d;

/// class for accumulator jacobians in parallel  用于并行计算雅可比矩阵的类
class JacobianAccumulator {
public:
    //类的构造函数,使用列表进行初始化
    JacobianAccumulator(
        const cv::Mat &img1_,
        const cv::Mat &img2_,
        const VecVector2d &px_ref_,//角点坐标
        const vector depth_ref_,//路标点的Z坐标值
        Sophus::SE3d &T21_) :
        img1(img1_), img2(img2_), px_ref(px_ref_), depth_ref(depth_ref_), T21(T21_) {
        projection = VecVector2d(px_ref.size(), Eigen::Vector2d(0, 0));
    }

    /// accumulate jacobians in a range 在range范围内加速计算雅可比矩阵
    void accumulate_jacobian(const cv::Range &range);

    /// get hessian matrix 获取海塞矩阵
    Matrix6d hessian() const { return H; }

    /// get bias 获取矩阵b
    Vector6d bias() const { return b; }

    /// get total cost  获取总共的代价
    double cost_func() const { return cost; }

    /// get projected points 获取图像2中的角点坐标
    VecVector2d projected_points() const { return projection; }

    /// reset h, b, cost to zero  将海塞矩阵H,矩阵b和代价cost置为0
    void reset() {
        H = Matrix6d::Zero();
        b = Vector6d::Zero();
        cost = 0;
    }

private:
    const cv::Mat &img1;
    const cv::Mat &img2;
    const VecVector2d &px_ref;//图像1中角点坐标
    const vector depth_ref;//图像1中路标点的Z坐标值
    Sophus::SE3d &T21;
    VecVector2d projection; // projected points

    std::mutex hessian_mutex;
    Matrix6d H = Matrix6d::Zero();
    Vector6d b = Vector6d::Zero();
    double cost = 0;
};

/**
 * pose estimation using direct method
 * @param img1
 * @param img2
 * @param px_ref
 * @param depth_ref
 * @param T21
 */
void DirectPoseEstimationMultiLayer(
    const cv::Mat &img1,
    const cv::Mat &img2,
    const VecVector2d &px_ref,
    const vector depth_ref,
    Sophus::SE3d &T21
);
//定义DirectPoseEstimationMultiLayer函数 多层直接法
/**
 * pose estimation using direct method
 * @param img1
 * @param img2
 * @param px_ref
 * @param depth_ref
 * @param T21
 */
void DirectPoseEstimationSingleLayer(
    const cv::Mat &img1,
    const cv::Mat &img2,
    const VecVector2d &px_ref,
    const vector depth_ref,
    Sophus::SE3d &T21
);
//定义DirectPoseEstimationSingleLayer函数 单层直接法
// bilinear interpolation 双线性插值求灰度值
inline float GetPixelValue(const cv::Mat &img, float x, float y) //inline表示内联函数,它是为了解决一些频繁调用的小函数大量消耗栈空间的问题而引入的
{
    // boundary check
    if (x < 0) x = 0;
    if (y < 0) y = 0;
    if (x >= img.cols) x = img.cols - 1;
    if (y >= img.rows) y = img.rows - 1;
    //...|I1      I2|...
    //...|          |...
    //...|          |...
    //...|I3      I4|...
    uchar *data = &img.data[int(y) * img.step + int(x)];//x和y是整数 
    //data[0] -> I1  data[1] -> I2  data[img.step] -> I3  data[img.step + 1] -> I4
    float xx = x - floor(x);//xx算出的是x的小数部分
    float yy = y - floor(y);//yy算出的是y的小数部分
    return float//最终的像素灰度值
    (
        (1 - xx) * (1 - yy) * data[0] +
        xx * (1 - yy) * data[1] +
        (1 - xx) * yy * data[img.step] +
        xx * yy * data[img.step + 1]
    );
}

int main(int argc, char **argv) {

    cv::Mat left_img = cv::imread(left_file, 0);//0表示返回灰度图,left.png表示000000.png
    cv::Mat disparity_img = cv::imread(disparity_file, 0);//0表示返回灰度图,disparity.png是left.png的视差图

    // let's randomly pick pixels in the first image and generate some 3d points in the first image's frame
    //在图像1中随机选择一些像素点,然后恢复深度,得到一些路标点
    cv::RNG rng;
    int nPoints = 2000;
    int boarder = 20;
    VecVector2d pixels_ref;
    vector depth_ref;

    // generate pixels in ref and load depth data
    for (int i = 0; i < nPoints; i++) {
        int x = rng.uniform(boarder, left_img.cols - boarder);  // don't pick pixels close to boarder 不要拾取靠近边界的像素 
        int y = rng.uniform(boarder, left_img.rows - boarder);  // don't pick pixels close to boarder 不要拾取靠近边界的像素 
        int disparity = disparity_img.at(y, x);
        double depth = fx * baseline / disparity; // you know this is disparity to depth
        depth_ref.push_back(depth);
        pixels_ref.push_back(Eigen::Vector2d(x, y));
    }

    // estimates 01~05.png's pose using this information
    Sophus::SE3d T_cur_ref;

    for (int i = 1; i < 6; i++)// 1~5 i从1到5,共5张图
    {  
        cv::Mat img = cv::imread((fmt_others % i).str(), 0);//读取图片,0表示返回一张灰度图
        // try single layer by uncomment this line
        // DirectPoseEstimationSingleLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);
        //利用单层直接法计算图像img相对于left_img的位姿T_cur_ref,以图片left.png为基准
        DirectPoseEstimationMultiLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);//调用DirectPoseEstimationMultiLayer 多层直接法
    }
    return 0;
}

void DirectPoseEstimationSingleLayer(
    const cv::Mat &img1,
    const cv::Mat &img2,
    const VecVector2d &px_ref,//第1张图中的角点坐标
    const vector depth_ref,//第1张图中路标点的Z坐标值 就是深度信息
    Sophus::SE3d &T21) {

    const int iterations = 10;//设置迭代次数为10
    double cost = 0, lastCost = 0;//将代价和最终代价初始化为0
    auto t1 = chrono::steady_clock::now();//开始计时
    JacobianAccumulator jaco_accu(img1, img2, px_ref, depth_ref, T21);

    for (int iter = 0; iter < iterations; iter++) {
        jaco_accu.reset();//重置
        //完成并行计算海塞矩阵H,矩阵b和代价cost
        cv::parallel_for_(cv::Range(0, px_ref.size()),
                          std::bind(&JacobianAccumulator::accumulate_jacobian, &jaco_accu, std::placeholders::_1));
        Matrix6d H = jaco_accu.hessian();//计算海塞矩阵
        Vector6d b = jaco_accu.bias();//计算b矩阵


        // solve update and put it into estimation
         //求解增量方程更新优化变量T21
        Vector6d update = H.ldlt().solve(b);;
        T21 = Sophus::SE3d::exp(update) * T21;
        cost = jaco_accu.cost_func();

        if (std::isnan(update[0])) //解出来的更新量不是一个数字,退出迭代
        {
            // sometimes occurred when we have a black or white patch and H is irreversible
            cout << "update is nan" << endl;
            break;
        }
        if (iter > 0 && cost > lastCost) //代价不再减小,退出迭代 
        {
            cout << "cost increased: " << cost << ", " << lastCost << endl;
            break;
        }
        if (update.norm() < 1e-3) //更新量的模小于1e-3,退出迭代
        {
            // converge
            break;
        }

        lastCost = cost;
        cout << "iteration: " << iter << ", cost: " << cost << endl;
    }//GN(高斯牛顿法)迭代结束

    cout << "T21 = \n" << T21.matrix() << endl;//输出T21矩阵
    auto t2 = chrono::steady_clock::now();//计时结束
    auto time_used = chrono::duration_cast>(t2 - t1);//计算耗时
    cout << "direct method for single layer: " << time_used.count() << endl;//输出使用单层直接法所用时间


    // plot the projected pixels here
    cv::Mat img2_show;
    cv::cvtColor(img2, img2_show, CV_GRAY2BGR);
    VecVector2d projection = jaco_accu.projected_points();
    for (size_t i = 0; i < px_ref.size(); ++i) {
        auto p_ref = px_ref[i];
        auto p_cur = projection[i];
        if (p_cur[0] > 0 && p_cur[1] > 0) {
            cv::circle(img2_show, cv::Point2f(p_cur[0], p_cur[1]), 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_show, cv::Point2f(p_ref[0], p_ref[1]), cv::Point2f(p_cur[0], p_cur[1]),
                     cv::Scalar(0, 250, 0));
        }
    }
    cv::imshow("current", img2_show);
    cv::waitKey();
}

void JacobianAccumulator::accumulate_jacobian(const cv::Range &range) {

    // parameters
    const int half_patch_size = 1;
    int cnt_good = 0;
    Matrix6d hessian = Matrix6d::Zero();
    Vector6d bias = Vector6d::Zero();
    double cost_tmp = 0;

    for (size_t i = range.start; i < range.end; i++) {

        // compute the projection in the second image //point_ref表示图像1中的路标点
        Eigen::Vector3d point_ref =
            depth_ref[i] * Eigen::Vector3d((px_ref[i][0] - cx) / fx, (px_ref[i][1] - cy) / fy, 1);
        Eigen::Vector3d point_cur = T21 * point_ref;//point_cur表示图像2中的路标点
        if (point_cur[2] < 0)   // depth invalid
            continue;
        //u,v表示图像2中对应的角点坐标
        float u = fx * point_cur[0] / point_cur[2] + cx, v = fy * point_cur[1] / point_cur[2] + cy;//视觉slam十四讲p99式5.5 
        // u = fx * X / Z + cx v = fy * Y / Z + cy  X  -> point_cur[0]  Y  -> point_cur[1] Z  -> point_cur[2]
        if (u < half_patch_size || u > img2.cols - half_patch_size || v < half_patch_size ||
            v > img2.rows - half_patch_size)
            continue;

        projection[i] = Eigen::Vector2d(u, v);//projection表示图像2中相应的角点坐标值
        double X = point_cur[0], Y = point_cur[1], Z = point_cur[2],
            Z2 = Z * Z, Z_inv = 1.0 / Z, Z2_inv = Z_inv * Z_inv;// Z2_inv = (1 / (Z * Z))
        cnt_good++;

        // and compute error and jacobian   计算海塞矩阵H,矩阵b和代价cost
        for (int x = -half_patch_size; x <= half_patch_size; x++)
            for (int y = -half_patch_size; y <= half_patch_size; y++) {
                //ei = I1(p1,i) - I(p2,i)其中p1,p2空间点P在两个时刻的像素位置坐标
                double error = GetPixelValue(img1, px_ref[i][0] + x, px_ref[i][1] + y) -
                               GetPixelValue(img2, u + x, v + y);//视觉slam十四讲p219式8.13
                Matrix26d J_pixel_xi;
                Eigen::Vector2d J_img_pixel;
                //视觉slam十四讲p220式8.18
                J_pixel_xi(0, 0) = fx * Z_inv;
                J_pixel_xi(0, 1) = 0;
                J_pixel_xi(0, 2) = -fx * X * Z2_inv;
                J_pixel_xi(0, 3) = -fx * X * Y * Z2_inv;
                J_pixel_xi(0, 4) = fx + fx * X * X * Z2_inv;
                J_pixel_xi(0, 5) = -fx * Y * Z_inv;

                J_pixel_xi(1, 0) = 0;
                J_pixel_xi(1, 1) = fy * Z_inv;
                J_pixel_xi(1, 2) = -fy * Y * Z2_inv;
                J_pixel_xi(1, 3) = -fy - fy * Y * Y * Z2_inv;
                J_pixel_xi(1, 4) = fy * X * Y * Z2_inv;
                J_pixel_xi(1, 5) = fy * X * Z_inv;
                // -fx * inv_z 相当于-fx / Z
                //0
                // -fx * X * Z2_inv相当于fx * X / ( Z * Z )
                //--fx * X * Y * Z2_inv相当于fx * X * Y / ( Z * Z) +fx
                //fx + fx * X * X * Z2_inv相当于fx * X * X / (Z * Z) 
                //-fx * Y * Z_inv相当于 fx * Y / Z
                //0
                //fy * Z_inv相当于-fy / Z
                //-fy * Y * Z2_inv相当于fy * Y / (Z * Z)
                //-fy - fy * Y * Y * Z2_inv相当于fy + fy * Y * Y / (Z * Z)
                //fy * X * Y * Z2_inv相当于fy * X * Y / ( Z * Z) 
                //fy * X * Z_inv相当于-fy * X / Z
                J_img_pixel = Eigen::Vector2d(
                    0.5 * (GetPixelValue(img2, u + 1 + x, v + y) - GetPixelValue(img2, u - 1 + x, v + y)),
                    0.5 * (GetPixelValue(img2, u + x, v + 1 + y) - GetPixelValue(img2, u + x, v - 1 + y))
                );//dx,dy是优化变量 即(Δu,Δv) 计算雅克比矩阵
                //dx,dy是优化变量 即(Δu,Δv) 计算雅克比矩阵
                //相当于 J = - [ {I1( u + i + 1,v + j )-I1(u + i - 1,v + j )}/2,I1( u + i,v + j + 1)-I1( u + i ,v + j - 1)}/2]T T表示转置
                //I1 -> 图像1的灰度信息
                //i -> x
                //j -> y

                // total jacobian
                Vector6d J = -1.0 * (J_img_pixel.transpose() * J_pixel_xi).transpose();

                hessian += J * J.transpose();
                bias += -error * J;
                cost_tmp += error * error;
            }
    }

    if (cnt_good) {
        // set hessian, bias and cost
        unique_lock lck(hessian_mutex);
        H += hessian;//H = Jij Jij(T)(累加和)
        b += bias;//b = -Jij * eij(累加和)
        cost += cost_tmp / cnt_good;//cost = || eij ||2 2范数
    }
}

void DirectPoseEstimationMultiLayer(
    const cv::Mat &img1,
    const cv::Mat &img2,
    const VecVector2d &px_ref,
    const vector depth_ref,
    Sophus::SE3d &T21) {

    // parameters
    int pyramids = 4;//金字塔层数为4
    double pyramid_scale = 0.5;//每层之间的缩放因子设为0.5
    double scales[] = {1.0, 0.5, 0.25, 0.125};

    // create pyramids 创建图像金字塔
    vector pyr1, pyr2; // image pyramids pyr1 -> 图像1的金字塔 pyr2 -> 图像2的金字塔
    for (int i = 0; i < pyramids; i++) {
        if (i == 0) {
            pyr1.push_back(img1);
            pyr2.push_back(img2);
        } else {
            cv::Mat img1_pyr, img2_pyr;
            //将图像pyr1[i-1]的宽和高各缩放0.5倍得到图像img1_pyr
            cv::resize(pyr1[i - 1], img1_pyr,
                       cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
            //将图像pyr2[i-1]的宽和高各缩放0.5倍得到图像img2_pyr
            cv::resize(pyr2[i - 1], img2_pyr,
                       cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
            pyr1.push_back(img1_pyr);
            pyr2.push_back(img2_pyr);
        }
    }

    double fxG = fx, fyG = fy, cxG = cx, cyG = cy;  // backup the old values 备份旧值
    for (int level = pyramids - 1; level >= 0; level--) {
        VecVector2d px_ref_pyr; // set the keypoints in this pyramid level  设置此金字塔级别中的关键点
        for (auto &px: px_ref) {
            px_ref_pyr.push_back(scales[level] * px);
        }

        // scale fx, fy, cx, cy in different pyramid levels  在不同的金字塔级别缩放 fx, fy, cx, cy
        fx = fxG * scales[level];
        fy = fyG * scales[level];
        cx = cxG * scales[level];
        cy = cyG * scales[level];
        DirectPoseEstimationSingleLayer(pyr1[level], pyr2[level], px_ref_pyr, depth_ref, T21);
    }

}

CMakeLists.txt 

和上面一样

执行结果:

./direct_method
iteration: 0, cost: 2.86149e+06
iteration: 1, cost: 1.24891e+06
iteration: 2, cost: 502096
iteration: 3, cost: 309320
cost increased: 323860, 309320
T21 = 
   0.999991  0.00230082  0.00354082 -0.00342245
-0.00231019    0.999994  0.00264471  0.00141269
-0.00353471 -0.00265286     0.99999   -0.727667
          0           0           0           1
direct method for single layer: 0.00788667
iteration: 0, cost: 342987
cost increased: 350341, 342987
T21 = 
   0.999989  0.00304081  0.00346467   0.0013507
-0.00304864    0.999993   0.0022568  0.00629644
-0.00345778 -0.00226734    0.999991   -0.729185
          0           0           0           1
direct method for single layer: 0.00129193
iteration: 0, cost: 485588
iteration: 1, cost: 433949
cost increased: 437925, 433949
T21 = 
   0.999991  0.00251354  0.00346628 -0.00271413
-0.00252164    0.999994  0.00233523  0.00243139
-0.00346039 -0.00234395    0.999991   -0.734721
          0           0           0           1
direct method for single layer: 0.00153717
iteration: 0, cost: 671749
T21 = 
   0.999991  0.00248083  0.00343393 -0.00374053
-0.00248837    0.999994  0.00219446  0.00304549
-0.00342847 -0.00220299    0.999992   -0.732343
          0           0           0           1
direct method for single layer: 0.00123316
iteration: 0, cost: 2.51555e+06
iteration: 1, cost: 1.71524e+06
iteration: 2, cost: 1.14561e+06
iteration: 3, cost: 716082
iteration: 4, cost: 514530
iteration: 5, cost: 464441
cost increased: 469800, 464441
T21 = 
     0.99997  0.000890844    0.0076648   0.00626557
-0.000926754     0.999989   0.00468276  0.000485719
 -0.00766054  -0.00468973      0.99996     -1.46297
           0            0            0            1
direct method for single layer: 0.00228563
iteration: 0, cost: 669221
iteration: 1, cost: 647188
cost increased: 656070, 647188
T21 = 
    0.99997  0.00111814  0.00762127   0.0036341
-0.00114909    0.999991  0.00405769  0.00355783
-0.00761666 -0.00406633    0.999963    -1.47096
          0           0           0           1
direct method for single layer: 0.00172928
iteration: 0, cost: 813344
iteration: 1, cost: 794647
cost increased: 801590, 794647
T21 = 
    0.999971  0.000722536   0.00764427 -0.000370313
 -0.00075261     0.999992   0.00393214   0.00253998
 -0.00764137  -0.00393778     0.999963     -1.48186
           0            0            0            1
direct method for single layer: 0.00158673
iteration: 0, cost: 929422
iteration: 1, cost: 886157
cost increased: 888568, 886157
T21 = 
    0.999971  0.000697443   0.00759024  -0.00250787
-0.000725732     0.999993   0.00372495    0.0039643
 -0.00758759  -0.00373035     0.999964     -1.48135
           0            0            0            1
direct method for single layer: 0.00136832
iteration: 0, cost: 2.41726e+06
iteration: 1, cost: 1.99178e+06
iteration: 2, cost: 1.6102e+06
iteration: 3, cost: 1.4033e+06
iteration: 4, cost: 1.11569e+06
iteration: 5, cost: 947643
iteration: 6, cost: 747482
iteration: 7, cost: 693225
cost increased: 693749, 693225
T21 = 
   0.999941  0.00147946   0.0107455   0.0385259
-0.00154019    0.999983  0.00564533   0.0115181
  -0.010737 -0.00566155    0.999926    -2.18525
          0           0           0           1
direct method for single layer: 0.00290631
iteration: 0, cost: 900638
iteration: 1, cost: 853208
iteration: 2, cost: 842470
cost increased: 853931, 842470
T21 = 
   0.999937    0.001409   0.0111432   0.0256605
 -0.0014693    0.999984  0.00540533  0.00282104
 -0.0111354 -0.00542136    0.999923     -2.2155
          0           0           0           1
direct method for single layer: 0.00209442
iteration: 0, cost: 1.14623e+06
iteration: 1, cost: 1.10642e+06
iteration: 2, cost: 1.10107e+06
cost increased: 1.10398e+06, 1.10107e+06
T21 = 
   0.999935   0.0015245   0.0112762   0.0182413
-0.00158631    0.999984  0.00547507 -0.00501183
 -0.0112677  -0.0054926    0.999921    -2.23479
          0           0           0           1
direct method for single layer: 0.00192249
iteration: 0, cost: 1.61177e+06
iteration: 1, cost: 1.51201e+06
iteration: 2, cost: 1.47355e+06
cost increased: 1.47477e+06, 1.47355e+06
T21 = 
    0.999934   0.00126182    0.0114042   0.00305559
  -0.0013221     0.999985   0.00527994 -0.000967677
  -0.0113974  -0.00529467     0.999921     -2.24112
           0            0            0            1
direct method for single layer: 0.00195658
iteration: 0, cost: 2.6218e+06
iteration: 1, cost: 2.31544e+06
iteration: 2, cost: 1.89746e+06
iteration: 3, cost: 1.6753e+06
iteration: 4, cost: 1.39565e+06
iteration: 5, cost: 1.19339e+06
iteration: 6, cost: 1.0917e+06
iteration: 7, cost: 1.01995e+06
iteration: 8, cost: 940921
iteration: 9, cost: 934156
T21 = 
    0.999872 -0.000262248    0.0159995    0.0245805
 0.000147523     0.999974   0.00717126   -0.0040278
   -0.016001  -0.00716798     0.999846      -2.9621
           0            0            0            1
direct method for single layer: 0.00321337
iteration: 0, cost: 1.13276e+06
iteration: 1, cost: 1.09144e+06
iteration: 2, cost: 1.09026e+06
cost increased: 1.09104e+06, 1.09026e+06
T21 = 
    0.999866 -0.000288411    0.0163843    0.0124827
 0.000179441     0.999978   0.00665199  -0.00512523
  -0.0163858  -0.00664816     0.999844     -3.00389
           0            0            0            1
direct method for single layer: 0.00154216
iteration: 0, cost: 1.4759e+06
iteration: 1, cost: 1.46226e+06
iteration: 2, cost: 1.44894e+06
cost increased: 1.44984e+06, 1.44894e+06
T21 = 
    0.999865 -0.000195523    0.0164373   0.00279762
 9.26072e-05      0.99998   0.00626168  -0.00473162
  -0.0164382  -0.00625932     0.999845     -3.01713
           0            0            0            1
direct method for single layer: 0.00152807
iteration: 0, cost: 2.22582e+06
iteration: 1, cost: 2.15677e+06
cost increased: 2.21724e+06, 2.15677e+06
T21 = 
    0.999864   0.00017151    0.0164623  -0.00920258
-0.000268269     0.999983   0.00587555  0.000393268
   -0.016461  -0.00587917     0.999847     -3.02448
           0            0            0            1
direct method for single layer: 0.00173756
iteration: 0, cost: 2.88843e+06
iteration: 1, cost: 2.63136e+06
iteration: 2, cost: 2.19455e+06
iteration: 3, cost: 1.76206e+06
iteration: 4, cost: 1.4942e+06
iteration: 5, cost: 1.33871e+06
iteration: 6, cost: 1.28744e+06
iteration: 7, cost: 1.21232e+06
iteration: 8, cost: 1.20579e+06
iteration: 9, cost: 1.19902e+06
T21 = 
    0.999802  0.000604608    0.0198866    0.0405523
-0.000748414     0.999974   0.00722462    0.0108371
  -0.0198817  -0.00723808     0.999776     -3.76346
           0            0            0            1
direct method for single layer: 0.00216502
iteration: 0, cost: 1.75298e+06
iteration: 1, cost: 1.70448e+06
iteration: 2, cost: 1.6791e+06
iteration: 3, cost: 1.65447e+06
iteration: 4, cost: 1.65178e+06
iteration: 5, cost: 1.56388e+06
T21 = 
    0.999783  0.000712451    0.0208365   0.00333502
-0.000854239     0.999977   0.00679664   0.00853946
  -0.0208312  -0.00681297      0.99976     -3.83408
           0            0            0            1
direct method for single layer: 0.00272291
iteration: 0, cost: 2.31197e+06
iteration: 1, cost: 2.1256e+06
cost increased: 2.19484e+06, 2.1256e+06
T21 = 
   0.999778  0.00103877   0.0210486 -0.00750971
-0.00117076     0.99998   0.0062593   0.0117474
 -0.0210416 -0.00628255    0.999759    -3.85214
          0           0           0           1
direct method for single layer: 0.00114812
iteration: 0, cost: 2.94452e+06
cost increased: 2.97505e+06, 2.94452e+06
T21 = 
   0.999786  0.00105871   0.0206453 -0.00288281
-0.00118441    0.999981  0.00607705   0.0108692
 -0.0206385 -0.00610021    0.999768    -3.85721
          0           0           0           1
direct method for single layer: 0.000892443

视觉SLAM十四讲CH8代码解析及课后习题详解_第5张图片

1. 除了LK 光流之外,还有哪些光流方法?它们各有什么特点?

还有KLT、HS、LK等光流。

KLT光流公式推导请参考:

KLT 光流 - mthoutai - 博客园一 光流 光流的概念是Gibson在1950年首先提出来的。它是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在https://www.cnblogs.com/mthoutai/p/7150625.html

 有兴趣的可以研究一下具体的代码:

链接:https://pan.baidu.com/s/1P0jZiXtu3IbnP1EtMzAVfQ 
提取码:8888

2. 在本节的程序的求图像梯度过程中,我们简单地求了u+1 和u-1 的灰度之差除2,作为u 方向上的梯度值。这种做法有什么缺点?提示:对于距离较近的特征,变化应该较快;而距离较远的特征在图像中变化较慢,求梯度时能否利用此信息?

参考这篇文章:

视觉SLAM十四讲(第二版)第8讲习题解答 - 知乎

3. 直接法能否和光流一样,提出反向法的概念?即,使用原始图像的梯度代替目标图像的梯度。

参考下面的:

视觉SLAM十四讲CH8课后习题3、4_nudt一枚研究生-CSDN博客https://blog.csdn.net/weixin_53660567/article/details/121274478

4. *使用Ceres 实现RGB-D 上的稀疏直接法和半稠密直接法。

视觉SLAM十四讲CH8课后习题3、4_nudt一枚研究生-CSDN博客https://blog.csdn.net/weixin_53660567/article/details/121274478

5. 相比于RGB-D 的直接法,单目直接法往往更加复杂。除了匹配未知之外,像素的距离也是待估计的。我们需要在优化时把像素深度也作为优化变量。阅读[57, 59],你能理解它的原理吗?如果不能,请在13 讲之后再回来阅读。

 *************

你可能感兴趣的:(视觉SLAM十四讲,c++)