/
drwxr-xr-x 2 test test 64B Aug 8 13:46 202208_1_3_0
drwxr-xr-x 2 test test 64B Aug 8 13:46 202208_4_6_1
drwxr-xr-x 2 test test 64B Sep 8 13:46 202209_1_1_0
drwxr-xr-x 2 test test 64B Sep 8 13:46 202209_4_4_
图示的最右边这一列,每个子目录的名字前面可能是一个时间,比如 202208 类似这样的前缀,202208 其实就是 Partition 名。Partition 名字是用户自己来定义的,但是按照约定俗成或者一些实践习惯,通常会使用时间来命名。
比如, 202208 这个 Partition,它会有两个子目录,子目录就是 Part,一个 Partition 通常会由多个 Part 来构成。用户在往 ClickHoue 写入数据时,会先写到内存里,再根据内存里的数据结构,持久化到磁盘上。同一个Partition 里面的数据如果比较大的话,在磁盘上就会变成很多 part。ClickHouse 官方建议不要在一个 Table 下创建太多 Part,它会定期或者不定期地对 Part 进行合并,减少总的 Part 数量。Merge 的概念就是合并 Part,这也是 MergeTree 这个引擎的名字来源之一。
再通过一个例子来了解 Part。Part 里会有很多小文件,有一些是元信息,比如索引信息,帮助用户快速查找数据。
$ ls -l /var/lib/clickhouse/data//
/202208_1_3_0
-rw-r--r-- 1 test test ?? Aug 8 14:06 ColumnA.bin
-rw-r--r-- 1 test test ?? Aug 8 14:06 ColumnA.mrk
-rw-r--r-- 1 test test ?? Aug 8 14:06 ColumnB.bin
-rw-r--r-- 1 test test ?? Aug 8 14:06 ColumnB.mrk
-rw-r--r-- 1 test test ?? Aug 8 14:06 checksums.txt
-rw-r--r-- 1 test test ?? Aug 8 14:06 columns.txt
-rw-r--r-- 1 test test ?? Aug 8 14:06 count.txt
-rw-r--r-- 1 test test ?? Aug 8 14:06 minmax_ColumnC.idx
-rw-r--r-- 1 test test ?? Aug 8 14:06 partition.dat
-rw-r--r-- 1 test test ?? Aug 8 14:06 primary.id
在示例的右侧,以 Column 作为前缀的这些文件是实际的数据文件,相比元信息通常会比较大。这个示例中只有 A、B 两列,实际的表里可能有很多列。所有这些文件,包括元信息、索引信息,都会共同帮助用户快速地在不同文件之间去做跳转或者查找。
ClickHouse 存储策略 如果要在 ClickHouse 里做冷热数据分层,会用到类似于 ES 中提到的生命周期策略,在 ClickHouse 里称为存储策略(Storage Policy)。
与 ES 稍有不同,ClickHouse 官方并没有将数据划分不同的阶段,比如热数据、温数据、冷数据这些不同的阶段,ClickHouse 提供了一些规则和配置方法,需要用户自己来制定分层策略。
每个 ClickHouse 节点支持同时配置多块磁盘,存储介质可以是多种多样的。比如,一般用户为了性能会给 ClickHouse 节点配置 SSD 盘;对于一些温冷数据,用户可以把数据存储在成本更低的介质,如机械盘。ClickHouse 的用户对底层存储介质是无感知的。
与 ES 相似,ClickHouse 用户需要根据数据不同的维度特征去制定存储策略,比如每个 part 子目录的大小、整个磁盘的剩余空间比例等,当满足某个维度特征设定的条件时就会触发存储策略的执行。这个策略会将某一个 part 从一块盘迁移到另外一块盘。在 ClickHouse 中,一个节点配置的多块盘是有优先级的,默认情况下数据会优先落在最高优先级的盘上。这样实现了 Part 从一个存储介质转移到另外一个存储介质上。
通过 ClickHouse 的一些 SQL 命令,如 MOVE PARTITION/PART 命令可以手动触发数据迁移,用户也可以通过这些命令做一些功能性的验证。其次有某些情况下,可能也希望能够通过手动的方式,而不是自动转移的方式来显式把 part 从当前的存储介质上转移到另外一个存储介质上。
ClickHouse 还支持基于时间的迁移策略,这是一个独立于存储策略的概念。数据写入后,ClickHouse 会按照每个表的 TTL 属性设置的时间来触发磁盘上数据的迁移。比如设置 TTL 为 7 天,ClickHouse 就会把表中超过 7 天的数据从当前的磁盘(如默认的 SSD)再写到另外一个更低优先级的磁盘上(如 JuiceFS)。
03- 温冷数据存储:为什么使用对象存储+ JuiceFS ? 企业把温、冷数据存放到云上后,存储成本相较于传统的 SSD 架构大为下降。企业还享受到了云上的弹性伸缩空间;不用为数据存储去做任何运维操作,比如扩缩容,或者一些数据清理类的工作 。温冷数据所需的存储容量比热数据大很多,尤其是随着时间推移,会产生大量需要长期保存的数据,如果这些数据都存储在本地,相应的运维工作将不堪重负。
但如果在对象存储上使用 Elasticsearch、ClickHouse 这类数据应用组件,会存在写入性能差、兼容性等问题。希望兼顾查询性能的企业,开始在云上寻找解决方案。在这样的背景之下,JuiceFS 被越来越多地应用于数据分层的架构之中 。
通过下面 ClickHouse 写入性能测试可以直观了解到写入SSD、JuiceFS 以及对象存储的性能差异。
JuiceFS 的写入吞吐量远大于直接对接对象存储,接近 SSD 。当用户把热数据转移到温暖数据这一层时,对于写入性能也有一定要求。在迁移的过程中,如果底层存储介质的写入性能差,整个迁移的流程也会拖得很长,对于整个 pipeline 或数据管理也会带来一些挑战。
下图的 ClickHouse 查询性能测试使用真实业务中的数据,并选取几个典型的查询场景进行测试。其中 q1-q4 是扫描全表的查询,q5-q7 是命中主键索引的查询。测试结果如下图:
JuiceFS 与 SSD 盘的查询性能基本相当,平均差异在 6% 左右,但是对象存储相比 SSD 盘有 1.4 至 30 倍的性能下降 。得益于 JuiceFS 高性能的元数据操作以及本地缓存特性,可以自动将查询请求需要的热数据缓存在 ClickHouse 节点本地,大幅提升了 ClickHouse 的查询性能。需要注意的是以上测试中对象存储是通过 ClickHouse 的 S3 磁盘类型进行访问,这种方式只有数据是存储在对象存储上,元数据还是在本地磁盘。如果通过类似 S3FS 的方式把对象存储挂载到本地,性能会有进一步的下降。
另外值得一提的是 JuiceFS 是一个完全兼容 POSIX 的文件系统,它能够与上层应用(如 Elasticsearch、ClickHouse)有很好的兼容。用户对底层存储是分布式文件系统或者是本地磁盘是没有感知的。如果直接使用对象存储,不能很好地实现与上层应用的兼容。
04- 实操:ES + JuiceFS Step 1:准备多种类型节点,分配不同角色 。每一个 ES 节点可以分配不同的角色,比如存热数据、温数据、冷数据等,用户需要准备不同机型的节点来匹配不同角色的需求。
Step 2:挂载 JuiceFS 文件系统 。一般用户将 JuiceFS 用于温、冷数据的存储,用户需要在 ES 温数据节点或冷数据的节点上把 JuiceFS 文件系统挂载到本地。用户可以通过符号链接或其它方式把挂载点配置到 ES 中去,让 ES 认为它的数据存储在本地目录里,但这个目录背后其实是一个 JuiceFS 文件系统。
Step 3:创建生命周期策略 。这个需要每个用户自己去定制,用户既可以通过 ES API 去创建,也可以通过 Kibana 去创建,Kibana 提供了一些相对便捷的方式去创建和管理生命周期策略。
Step 4:为索引设置生命周期策略 。创建完生命周期策略之后,用户需要把这个策略应用到索引上,也就是要为索引去设置刚刚创建好的策略。用户可以通过索引模板的方式,可以在 Kibana 里创建索引模板,也可以通过 index.lifycycle.name,显式通过 API 配置。
这里有几个小提示:
Tip 1:Warm 或 Cold 节点的副本数(replica)可以设置为 1 。所有数据本质上都是放在 JuiceFS 上,它的底层是对象存储,因而数据的可靠性已经足够高了,所以在 ES 这边可以适当降低副本数,节省存储空间。
Tip 2:开启 Force merge 可能会导致节点 CPU 持续占用,酌情关闭 。从热数据转移到温数据这个阶段时,ES 会将所有热数据索引对应的底层 segment 做合并。如果开启 Force merge 这个功能,ES 会先合并完这些 segment 以后,再把它存储到温数据的底层系统。然而合并 segment 是一个非常消耗 CPU 的过程,如果温数据的数据节点同时也需要承载一些查询请求,可以酌情关闭这个功能能,也就是原封不动地把数据保留下来,直接写到底层存储中。
Tip 3:Warm 或 Cold 阶段的索引可以设置为只读 。在给温数据和冷数据阶段建立索引时,我们基本上可以认为这些数据是只读的,这些阶段的索引不会被修改。设置为只读可以适当降低温冷数据节点上的资源,比如内存可以释放一些,从而节省一些在温节点或者冷节点上的硬件资源。
05- 实操:ClickHouse + JuiceFS **Step 1:在所有 ClickHouse 节点上挂载 JuiceFS 文件系统。**这个路径可以是任意路径,因为 ClickHouse 会有一个配置文件去指向挂载点。
**Step 2:修改 ClickHouse 配置,新增 JuiceFS 盘。**在 ClickHouse 中把刚刚挂载好的 JuiceFS 文件系统挂载点添加进来,让 ClickHouse 可以识别这个新磁盘。
**Step 3:新增存储策略,设定下沉数据规则。**这个存储策略会根据用户的规则去不定期的、自动地将数据从默认磁盘上下沉到指定的,比如 JuiceFS 中。
**Step 4:为特定表设置存储策略及 TTL。**存储策略制定好之后,需要把这个策略应用到某一个表上。前期测试阶段和验证阶段,可以把用相对大一点的表去做测试和验证,如果用户希望基于时间维度来实现数据下沉,就同时也需要在表上设置 TTL。整个下沉过程是一个自动的机制,可以通过 ClickHouse 的 system 表查看当前正在进行数据迁移的 part 以及迁移进度。
**Step 5:手动移动 part 进行验证。**可以通过手动执行 MOVE PARTITION
命令的方式去验证当前的配置或存储策略是否生效。
下图是一个具体示例,在 ClickHouse 中有一个叫做 storage_configuration
的配置项,其中包含 disks 配置,这里会把 JuiceFS 作为一个盘加进来,我们将它命名为“jfs”,但其实可以用任意名字,挂载点是 /jfs
目录。
/jfs default 1073741824 jfs 0.1
再往下是 policies 配置项,这里定义了一个叫做 hot_and_cold
的存储策略,用户需要定义一些具体的规则,如 volumes 中按照先热后冷的优先级排列,数据首先会落到 volumes 里的第一个 hot 盘上,及默认的 ClickHouse 磁盘,一般是本地的 SSD。
volumes 中的 max_data_part_size_bytes
配置表示当某一个 part 的大小超过设定的大小之后,就会触发存储策略的执行,对应的 part 会下沉到下一个 volume,也就是 cold volume。在上面的示例中,cold volume 就是 JuiceFS。
最下面的 move_factor
配置代表 ClickHouse 会根据当前磁盘的剩余空间比例来触发存储策略的执行。
CREATE TABLE test ( d DateTime, ...) ENGINE = MergeTree...TTL d + INTERVAL 1 DAY TO DISK 'jfs'SETTINGS storage_policy = 'hot_and_cold';
如上面的代码所示,有了存储策略之后,在创建表或者修改这个表的 schema 时,可以在 SETTINGS 中设置 storage_policy 为前面定义的 hot_and_cold 存储策略。上述代码中倒数第二行的 TTL 即为上文提过的基于时间的分层规则。在这个示例中,我们指定的表中某一个叫做 d 的列,它的类型是 DateTime,结合 INTERVAL 1 DAY 就表示当新的数据写进来超过一天之后,这些数据就会转移到 JuiceFS 上。
06- 展望 **第一,副本共享。**无论是 ES 还是 ClickHouse,他们都是由多副本来保证数据的可用性和可靠性。JuiceFS 本质上是一个共享文件系统,任何一份数据写入到 JuiceFS 之后,不再需要维护多个副本。比如,用户有两个 ClickHouse 节点,都有某一个表的或者某一个 part 的副本,这两个节点都下沉到了 JuiceFS,它可能会写两次一样的数据。**未来,我们是否可以做到让上层引擎能够感知到下层使用的是一个共享存储,当数据下沉的时候去降低副本数,这样在不同节点之间是可以做副本共享的。**从应用层来说,用户查看这个表, part 数还是多副本,但实际在底层的存储上只保了一个副本,因为本质上数据是可以共享的。
**第二点,故障恢复。**当数据已经下沉到一个远端的共享存储之后,如果 ES 或 ClickHousle 节点宕机故障之后,怎么快速地做故障恢复?除了热数据以外的大部分数据其实都已经转移到了一个远端的共享存储上,这个时候如果要去恢复或创建一个新的节点时,成本会比传统的基于本地盘的故障恢复方式轻量很多,这在 ES 或者 ClickHouse 场景上是值得探索的。
**第三点,存算分离。**不管 ES 也好,还是 ClickHouse,整个社区也都在尝试或者探索在云原生的大环境下,怎么去让传统的这些基于本地盘的存储系统变成一个真正的存算分离系统。但存算分离不是仅仅简单地把数据和计算分离就好了,同时要满足上层各种复杂的需求,比如对于查询性能的需求、对于写入性能的需求、对各种维度调优的需求,在存量分离整个大的方向上还是有许多值得探索的技术难点。
**第四点,其他上层应用组件数据分层探索。**除了ES 和 ClickHouse 这两个场景,我们最近也有在做一些尝试,把 Apache Pulsar 中的温冷数据下沉到 JuiceFS 中,用到的一些策略和方案与本文中提到的是类似的,只不过在 Apache Pulsar 中,它需要下沉的数据类型或者数据格式不太一样。有了进一步成功实践后,会分享出来。
相关阅读:
你可能感兴趣的:(elasticsearch,clickhouse,大数据)
nosql数据库技术与应用知识点
皆过客,揽星河
NoSQL nosql 数据库 大数据 数据分析 数据结构 非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
ES聚合分析原理与代码实例讲解
光剑书架上的书
大厂Offer收割机 面试题 简历 程序员读书 硅基计算 碳基计算 认知计算 生物计算 深度学习 神经网络 大数据 AIGC AGI LLM Java Python 架构设计 Agent 程序员实现财富自由
ES聚合分析原理与代码实例讲解1.背景介绍1.1问题的由来在大规模数据分析场景中,特别是在使用Elasticsearch(ES)进行数据存储和检索时,聚合分析成为了一个至关重要的功能。聚合分析允许用户对数据集进行细分和分组,以便深入探索数据的结构和模式。这在诸如实时监控、日志分析、业务洞察等领域具有广泛的应用。1.2研究现状目前,ES聚合分析已经成为现代大数据平台的核心组件之一。它支持多种类型的聚
WebMagic:强大的Java爬虫框架解析与实战
Aaron_945
Java java 爬虫 开发语言
文章目录引言官网链接WebMagic原理概述基础使用1.添加依赖2.编写PageProcessor高级使用1.自定义Pipeline2.分布式抓取优点结论引言在大数据时代,网络爬虫作为数据收集的重要工具,扮演着不可或缺的角色。Java作为一门广泛使用的编程语言,在爬虫开发领域也有其独特的优势。WebMagic是一个开源的Java爬虫框架,它提供了简单灵活的API,支持多线程、分布式抓取,以及丰富的
免费的GPT可在线直接使用(一键收藏)
kkai人工智能
gpt
1、LuminAI(https://kk.zlrxjh.top)LuminAI标志着一款融合了星辰大数据模型与文脉深度模型的先进知识增强型语言处理系统,旨在自然语言处理(NLP)的技术开发领域发光发热。此系统展现了卓越的语义把握与内容生成能力,轻松驾驭多样化的自然语言处理任务。VisionAI在NLP界的应用领域广泛,能够胜任从机器翻译、文本概要撰写、情绪分析到问答等众多任务。通过对大量文本数据的
如何利用大数据与AI技术革新相亲交友体验
h17711347205
回归算法 安全 系统架构 交友 小程序
在数字化时代,大数据和人工智能(AI)技术正逐渐革新相亲交友体验,为寻找爱情的过程带来前所未有的变革(编辑h17711347205)。通过精准分析和智能匹配,这些技术能够极大地提高相亲交友系统的效率和用户体验。大数据的力量大数据技术能够收集和分析用户的行为模式、偏好和互动数据,为相亲交友系统提供丰富的信息资源。通过分析用户的搜索历史、浏览记录和点击行为,系统能够深入了解用户的兴趣和需求,从而提供更
未来软件市场是怎么样的?做开发的生存空间如何?
cesske
软件需求
目录前言一、未来软件市场的发展趋势二、软件开发人员的生存空间前言未来软件市场是怎么样的?做开发的生存空间如何?一、未来软件市场的发展趋势技术趋势:人工智能与机器学习:随着技术的不断成熟,人工智能将在更多领域得到应用,如智能客服、自动驾驶、智能制造等,这将极大地推动软件市场的增长。云计算与大数据:云计算服务将继续普及,大数据技术的应用也将更加广泛。企业将更加依赖云计算和大数据来优化运营、提升效率,并
Hadoop架构
henan程序媛
hadoop 大数据 分布式
一、案列分析1.1案例概述现在已经进入了大数据(BigData)时代,数以万计用户的互联网服务时时刻刻都在产生大量的交互,要处理的数据量实在是太大了,以传统的数据库技术等其他手段根本无法应对数据处理的实时性、有效性的需求。HDFS顺应时代出现,在解决大数据存储和计算方面有很多的优势。1.2案列前置知识点1.什么是大数据大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的大量数据集合,
ElasticSearch查询超过10000条(1000页)时出现Result window is too large的问题
王月亮17
问题当ES数据量较大,使用分页查询超过10000条(1000页)时,出现如下错误:Cannotexecutejestaction,responsecode:500,error:{"root_cause":[{"type":"query_phase_execution_exception","reason":"Resultwindowistoolarge,from+sizemustbelesstha
[转载] NoSQL简介
weixin_30325793
大数据 数据库 运维
摘自“百度百科”。NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。虽然NoSQL流行语
Kafka详细解析与应用分析
芊言芊语
kafka 分布式
Kafka是一个开源的分布式事件流平台(EventStreamingPlatform),由LinkedIn公司最初采用Scala语言开发,并基于ZooKeeper协调管理。如今,Kafka已经被Apache基金会纳入其项目体系,广泛应用于大数据实时处理领域。Kafka凭借其高吞吐量、持久化、分布式和可靠性的特点,成为构建实时流数据管道和流处理应用程序的重要工具。Kafka架构Kafka的架构主要由
分享一个基于python的电子书数据采集与可视化分析 hadoop电子书数据分析与推荐系统 spark大数据毕设项目(源码、调试、LW、开题、PPT)
计算机源码社
Python项目 大数据 大数据 python hadoop 计算机毕业设计选题 计算机毕业设计源码 数据分析 spark毕设
作者:计算机源码社个人简介:本人八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!学习资料、程序开发、技术解答、文档报告如需要源码,可以扫取文章下方二维码联系咨询Java项目微信小程序项目Android项目Python项目PHP项目ASP.NET项目Node.js项目选题推荐项目实战|p
疫情,疫情
东山草
2020年,疫情爆发,至今已近三年,反反复复,此起彼伏。不但没被消灭,还自我发展,从德尔塔到奥密克戎,与时俱进的变异着。去年11月,疫情之下,大数据800米范围内,都成为时空伴随者。“你的码儿有没有变颜色”“你绿码还是黄码”成为那段时间的流行语,当然少不了的还有全员核酸。段子手整出来一首歌:我走过你走过的路,这算不算相逢?我吹过你吹过的风,这算不算相拥?800米内我们不曾擦肩而过,你却要我14天相
在服务器计算节点中使用 jupyter Lab
ranshan567
程序人生
JupyterLab是一个基于网页的交互式开发环境,用于科学计算、数据分析和机器学.jupyterlab是jupyternotebook的下一代产品,集成了更多功能,使用起来更方便.在进行数据分析及可视化时,个人电脑不能满足大数据的分析需求,就需要用到高性能计算机集群资源,然而计算机集群的计算节点往往没有联网功能,所以在计算机集群中使用jupyterLab需要进行一些配置。具体的步骤如下:
大数据真实面试题---SQL
The博宇
大数据面试题——SQL 大数据 mysql sql 数据库 big data
视频号数据分析组外包招聘笔试题时间限时45分钟完成。题目根据3张表表结构,写出具体求解的SQL代码(搞笑品类定义:视频分类或者视频创建者分类为“搞笑”)1、表创建语句:createtablet_user_video_action_d(dsint,user_idstring,video_idstring,action_typeint,`timestamp`bigint)rowformatdelimi
Flume:大规模日志收集与数据传输的利器
傲雪凌霜,松柏长青
后端 大数据 flume 大数据
Flume:大规模日志收集与数据传输的利器在大数据时代,随着各类应用的不断增长,产生了海量的日志和数据。这些数据不仅对业务的健康监控至关重要,还可以通过深入分析,帮助企业做出更好的决策。那么,如何高效地收集、传输和存储这些海量数据,成为了一项重要的挑战。今天我们将深入探讨ApacheFlume,它是如何帮助我们应对这些挑战的。一、Flume概述ApacheFlume是一个分布式、可靠、可扩展的日志
云服务业界动态简报-20180128
Captain7
一、青云青云QingCloud推出深度学习平台DeepLearningonQingCloud,包含了主流的深度学习框架及数据科学工具包,通过QingCloudAppCenter一键部署交付,可以让算法工程师和数据科学家快速构建深度学习开发环境,将更多的精力放在模型和算法调优。二、腾讯云1.腾讯云正式发布腾讯专有云TCE(TencentCloudEnterprise)矩阵,涵盖企业版、大数据版、AI
全面指南:用户行为从前端数据采集到实时处理的最佳实践
数字沉思
营销 流量运营 系统架构 前端 内容运营 大数据
引言在当今的数据驱动世界,实时数据采集和处理已经成为企业做出及时决策的重要手段。本文将详细介绍如何通过前端JavaScript代码采集用户行为数据、利用API和Kafka进行数据传输、通过Flink实时处理数据的完整流程。无论你是想提升产品体验还是做用户行为分析,这篇文章都将为你提供全面的解决方案。设计一个通用的ClickHouse表来存储用户事件时,需要考虑多种因素,包括事件类型、时间戳、用户信
大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员 大数据 hadoop 人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
架构评审的自动化与人工智能: 如何提高效率
光剑书架上的书
架构 自动化 人工智能 运维
1.背景介绍架构评审是软件开发过程中的一个关键环节,它旨在确保软件架构的质量、可维护性和可扩展性。传统的架构评审通常是由人工进行,需要大量的时间和精力。随着大数据技术和人工智能的发展,自动化和人工智能技术已经开始应用于架构评审,从而提高评审的效率和准确性。在本文中,我们将讨论如何通过自动化和人工智能技术来提高架构评审的效率。我们将从以下几个方面进行讨论:背景介绍核心概念与联系核心算法原理和具体操作
【数字化供应链】数字化供应链架构、全景管理、全流程贯通方案
数字化建设方案
数字化转型 数据治理 主数据 数据仓库 供应链 数字仓储 智慧物流 智慧仓储 物流园区 架构 微服务 数据挖掘 大数据 人工智能
原文《数字化供应链架构、全景管理、全流程贯通方案》PPT格式。主要从供应链管理全景、智慧供应链建设总体目标、供应链总体业务流程、供应链总体功能架构、供应链总体技术架构、供应链全流程贯通、供应链全领域管理、供应链数据数据分析、供应链决策中台等进行建设。本文仅对主要内容进行介绍。来源网络公开渠道,旨在交流学习,如有侵权联系速删,更多参考公众号:优享智库基于先进IT技术、大数据能力、物联网应用、区块链平
80
鑫_259b
科普一个谈恋爱的方法。在以前,谈恋爱千难万难,就难在对对方不知底细,不知道对方希望自己是一个怎样的人,要耗费大量的时间去试探、再磨合,往往会因为一些小事一些细节,满盘皆输。在一个信息化的时代,在一个大数据近乎变成了流行语的时代,我们要跟上时代的步伐,通过大数据,去寻找异性最希望自己展现出来的形象是什么,才可以在爱情的道路上少走弯路。那这个大数据怎么操作呢?上街发问卷?问别人的择偶标准?一来会被打死
解锁企业潜能,Vatee万腾平台引领智能新纪元
自媒体经济说
其他
在数字化转型的浪潮中,企业正站在一个前所未有的十字路口,面对着前所未有的机遇与挑战。解锁企业内在潜能,实现跨越式发展,已成为众多企业的共同追求。而Vatee万腾平台,作为智能科技的先锋,正以其强大的智能赋能能力,引领企业步入一个全新的智能纪元。Vatee万腾平台,是一个集成了人工智能、大数据、云计算等前沿技术的综合性智能服务平台。它不仅仅是一个技术工具,更是企业转型升级的加速器,能够深入企业运营的
释放“AI+”新质生产力,深算院如何“把大数据变小”?
YashanDB
YashanDB 国产数据库 数据库 数据库 大数据
近期,南都·湾财社推出《新质·中国造》栏目,深入千行百业,遍访湾区企业,解锁湾区新质生产力,共探高质量发展之道。本期对话深圳计算科学研究院YashanDB首席技术官陈志标,探讨国产数据库如何实现创新突围,抢抓数字经济时代的新机遇。以下是专访内容:如何应对AI时代所面临的算力挑战?南都·湾财社:数据、算力和算法是发展人工智能的三要素,深算院做了怎样的前瞻性布局?陈志标:今年,政府工作报告中首次提及开
数字化智能工厂数字化供应链架构、全景管理、全流程贯通方案
数字化建设方案
智能制造 数字工厂 制造业数字化转型 工业互联网 架构
随着信息技术的飞速发展,数字化转型已成为制造企业提升竞争力的关键途径。数字化智能工厂通过集成先进的物联网(IoT)、大数据、云计算、人工智能(AI)等技术,实现了生产过程的智能化、供应链管理的精准化及决策的科学化。本方案旨在构建一套完善的数字化供应链架构,实现全景管理、全流程贯通、智慧化升级,以数据为驱动,强化技术支撑与安全管理体系,推动企业向智能制造迈进。一、数字化供应链架构1.**集成化平台构
日记——我的歌单
静若小猴
又到一年一度大数据汇总的时候了,听歌已经成为很多人生活里的一种乐趣。春夏秋冬,我们都有自己喜欢的歌,歌词歌曲唱出沃尔玛你的心声。还记得大学时候最喜欢听的《春天里》,我有一天单曲回放了30遍,总觉得听着仿佛看到自己声音。还有的歌,初听不知曲中意,再听已经是曲终人,听着歌流泪,听着歌入睡……还记得那些年少的故事吗,总觉得自己才是故事外的人,却不是自己已经入歌。一段时间会喜欢一个人的音乐,一段时间会沉静
Linux dmesg命令:显示开机信息
fafadsj666
linux 数据库 数据挖掘 机器学习 大数据
通过学习《Linux启动管理》一章可以知道,在系统启动过程中,内核还会进行一次系统检测(第一次是BIOS进行加测),但是检测的过程不是没有显示在屏幕上,就是会快速的在屏幕上一闪而过那么,如果开机时来不及查看相关信息,我们是否可以在开机后查看呢?答案是肯定的,使用dmesg命令就可以。无论是系统启动过程中,还是系统运行过程中,只要是内核产生的信息,都会被存储在系统缓冲区中,已经为大家精心准备了大数据
大数据新视界 --大数据大厂之揭秘大数据时代 Excel 魔法:大厂数据分析师进阶秘籍
青云交
大数据新视界 Excel 数据分析 函数公式 数据透视表 图表功能 规划求解 数据分析工具库 大数据新视界 数据库
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:Ja
大数据新视界 --大数据大厂之数据挖掘入门:用 R 语言开启数据宝藏的探索之旅
青云交
大数据新视界 数据库 大数据 数据挖掘 R 语言 算法案例 未来趋势 应用场景 学习建议 大数据新视界
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:Ja
高职人工智能训练师边缘计算实训室解决方案
武汉唯众智创
人工智能训练师边缘计算实训室 人工智能训练师实训室 边缘计算实训室
一、引言随着物联网(IoT)、大数据、人工智能(AI)等技术的飞速发展,计算需求日益复杂和多样化。传统的云计算模式虽在一定程度上满足了这些需求,但在处理海量数据、保障实时性与安全性、提升计算效率等方面仍面临诸多挑战。在此背景下,边缘计算作为一种新兴的计算模式应运而生,通过将计算能力推向数据生成或用户所在的网络边缘,显著降低了数据传输的延迟,提升了处理效率,并增强了数据安全性。针对高等职业院校的人工
python基于django/flask的NBA球员大数据分析与可视化python+java+node.js
QQ_511008285
python django flask java spring boot 数据分析
前端开发框架:vue.js数据库mysql版本不限后端语言框架支持:1java(SSM/springboot)-idea/eclipse2.Nodejs+Vue.js-vscode3.python(flask/django)--pycharm/vscode4.php(thinkphp/laravel)-hbuilderx数据库工具:Navicat/SQLyog等都可以本文针对NBA球员的大数据进行
LeetCode[位运算] - #137 Single Number II
Cwind
java Algorithm LeetCode 题解 位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipse MyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
GMT时间格式转换
adminjun
GMT 时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
回顾java数组复制
ayaoxinchao
java 数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis 数据库 NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
java枚举序列化问题
bingyingao
java 枚举 序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
Hybridizing OO and Functional Design
bookjovi
erlang haskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java 设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
hadoop hdfs 添加数据目录出错
daizj
hadoop hdfs 扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
yii 修改模块使用的布局文件
dcj3sjt126com
yii layouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
设计模式之单例模式
come_for_dream
设计模式 单例模式 懒汉式饿汉式 双重检验锁失败 无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
8、数组
豆豆咖啡
二维数组 数组 一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
如何在Swift语言中创建http请求
shoothao
http swift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs