- 高斯混合模型(Gaussian Mixture Model, GMM)
不想秃头的程序
神经网络语音识别人工智能深度学习网络
高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据点由多个高斯分布(GaussianDistribution)混合生成的过程。它广泛应用于聚类分析、密度估计、图像分割、语音识别等领域,尤其适合处理非球形簇或多模态数据。以下是GMM的详细介绍:一、核心思想GMM假设数据是由多个高斯分布混合生成的,每个高斯分布代表一个簇(Cluster),并引入隐变量(Lat
- Python 数据挖掘实战: 关联规则与聚类分析,解锁数据价值的钥匙
清水白石008
pythonPython题库python数据挖掘动画
Python数据挖掘实战:关联规则与聚类分析,解锁数据价值的钥匙引言在数字化浪潮席卷全球的今天,数据已成为企业和组织最重要的战略资产。海量数据蕴藏着巨大的价值,等待我们去挖掘和发现。数据挖掘(DataMining),作为从海量数据中提取有价值知识和模式的关键技术,正日益受到各行各业的重视。它如同探矿者的火眼金睛,能够穿透数据的迷雾,发现隐藏在背后的规律和趋势,为商业决策、科学研究和社会发展提供强有
- 《Python数据分析与挖掘实战》Chapter8中医证型关联规则挖掘笔记
茫茫大地真干净
机器学习Python数据挖掘
最近在学习《Python数据分析与挖掘实战》中的案例,写写自己的心得。代码分为两大部分:1.读取数据并进行聚类分析2.应用Apriori关联规则挖掘规律1.聚类部分函数分析:defprogrammer_1():datafile="C:/Users/longming/Desktop/chapter8/data/data.xls"processedfile="C:/Users/longming/Des
- SPSS配对t检验,配对样本的相关系数和对应的显著性该怎么理解呢?
cda2024
算法
在数据分析的世界里,SPSS是一个强大的工具,它可以帮助我们更好地理解和解释数据。今天我们要聊的是一个非常实用但又容易让人困惑的话题——SPSS配对t检验中的配对样本相关系数及其显著性该如何理解?想象一下,你是一名CDA(CertifiedDataAnalyst)持证人,正在为一家公司分析员工的绩效提升情况。公司实施了一项新的培训计划,并希望了解这项培训是否有效。为了评估培训效果,你需要比较员工在
- Prompt Engineering终极手册:构建高效AI提示词库的完整技术路线
LCG元
大模型prompt人工智能
目录一、提示词库构建核心架构二、关键技术实现步骤1.数据采集与清洗2.提示词向量化编码3.聚类分析与分类存储三、API服务化部署四、性能优化方案五、监控与持续优化六、应用效果展示本文将深入探讨构建企业级AI提示词库的完整技术方案,含数据处理、模型训练、部署监控全流程代码实现在AI应用爆炸式增长的今天,提示词质量直接决定模型输出效果。本文将手把手教你构建企业级提示词库,涵盖以下核心技术环节:一、提示
- 从0开始学习R语言--Day27--空间自相关
Chef_Chen
学习
有的时候,我们在数据进行分组时,会发现用正常的聚类分析的方法和思维,分组的情况不是很理想。其实这是因为我们常常会忽略一个问题:假设我们正在分析的数据是真实的,那么它也肯定在一定程度上符合客观规律。而如果我们正在分析的数据中,有真实的客观空间数据时,可以考虑用空间自相关的方法去分析。例如我们在分析城市犯罪率的时候,用聚类分析的思维,我们可能会思考不同城市的犯罪特征是什么,是否有相似点,亦或是试图把城
- BIRCH、K-Means、KNN聚类算法实战:二维坐标空间聚类分析
闲书郎
本文还有配套的精品资源,点击获取简介:本项目深入探讨BIRCH、K-Means、K-Means++和K-NearestNeighbors(KNN)四种聚类算法在二维坐标空间中的应用与分析。通过Python代码实现,项目着重介绍算法的运行机制,以及它们在聚类任务中的效果和优缺点。测试集包含二维坐标数据,通过比较不同算法处理效果,学习者将加深对算法的理解,并为未来的数据分析工作打下基础。1.聚类算法在
- 文本聚类分析:基于相似性的文档分组
Morpheon
RRTextClustering
大家周一快乐!最近世界局势动荡,中东冲突不断。这种混乱可能会影响我们对世界的认知。就像法国人说的“C’estlavie”(这就是生活)。但无论未来如何,请记住瑞士人常说的“Lavieestbelle”(生活是美好的)。文本聚类分析通过内容相似性将文档分组,实现在R语言中自动对大型文本集合进行分类。什么是文本聚类分析?聚类分析将文档分组,使得同一组内的文档彼此之间的相似度高于与其他组中文档的相似度。
- 没有统计学基础,如何才能学好SPSS和SAS?
cda2024
学习python数据分析
在当今数据驱动的时代,掌握数据分析工具如SPSS和SAS已经成为许多职场人士的必备技能。然而,很多初学者常常会问:“我没有统计学基础,如何才能学好SPSS和SAS?”这确实是一个值得探讨的问题。本文将从多个角度为你解答这个问题,并提供一些实用的学习建议。一、理解SPSS和SAS的定位首先,让我们来了解一下SPSS和SAS这两个工具的定位和功能。SPSS(StatisticalPackagefort
- 数据挖掘是什么?数据挖掘技术有哪些?
Leo.yuan
数据数据挖掘人工智能大数据数据库数据分析
目录一、数据挖掘是什么二、常见的数据挖掘技术1.关联规则挖掘2.分类算法3.聚类分析4.回归分析三、数据挖掘的应用领域1.商业领域2.医疗领域3.金融领域4.其他领域四、数据挖掘面临的挑战和未来趋势1.面临的挑战2.未来趋势五、总结数据挖掘在当今时代的重要性日益凸显,它能从海量的数据中发现有价值的信息。下面我将为大家详细介绍数据挖掘是什么,以及常见的数据挖掘技术有哪些。本文核心观点如下:数据挖掘是
- 数学建模期末速成 聚类分析与判别分析
HCl+NaOH=NaCl+H_2O
数学建模
聚类分析是在不知道有多少类别的前提下,建立某种规则对样本或变量进行分类。判别分析是已知类别,在已知训练样本的前提下,利用训练样本得到判别函数,然后对未知类别的测试样本判别其类别。聚类分析根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行分类。常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。对样本进行分类称为Q型聚类分析,
- 聚类分析现状
云cia
机器学习人工智能
针对上述问题,一种结合降维技术和聚类算法的解决方案被广泛认可,即先采用降维技术,如主成分分析、局部线性嵌入或核方法等对数据进行降维,再对降维后的特征进行聚类.该方案虽然在一定程度上降低了高维空间的聚类难度,但由于数据降维是独立于聚类任务的,这意味着提取的特征往往并不具备簇类结构.子空间方法则提供另一种很好的思路.该方法假设高维数据分布于多个低维子空间的组合,通过将高维数据分割到各自所属的本征低维子
- 打卡第十八天
Shining_Jiang
人工智能机器学习
聚类后的分析:推断簇的类型知识点回顾:推断簇含义的两个思路:先选特征和后选特征。先选特征是指在聚类之前根据领域知识或假设选择特定的特征进行聚类;后选特征则是在聚类完成后,通过分析簇的特征来推断其含义。通过可视化图形借助AI定义簇的含义。可视化工具如散点图、热图等可以帮助直观地观察簇的分布和特征,结合AI算法可以更准确地定义簇的含义。科研逻辑闭环:通过精度判断特征工程价值。在聚类分析中,特征工程的质
- 大数据领域的游戏数据运营策略
大数据洞察
大数据游戏ai
大数据领域的游戏数据运营策略关键词:大数据、游戏数据运营、用户行为分析、精准营销、游戏平衡摘要:本文聚焦于大数据领域下的游戏数据运营策略。在当今游戏市场竞争激烈的环境中,充分利用大数据技术能够为游戏的运营和发展提供有力支持。文章从背景介绍入手,阐述了大数据在游戏数据运营中的重要性和应用范围,详细讲解了核心概念如用户画像、游戏数据指标等及其相互联系。接着深入剖析核心算法原理,包括聚类分析、关联规则挖
- Sentence Transformers 教程!
小森( ﹡ˆoˆ﹡ )
人工智能transformernlplangchaingpt-3python
SentenceTransformers专注于句子和文本嵌入,支持超过100种语言。利用深度学习技术,特别是Transformer架构的优势,将文本转换为高维向量空间中的点,使得相似的文本在几何意义上更接近。语义搜索:构建高效的语义搜索系统,找到最相关的查询结果。信息检索与重排:在大规模文档集合中查找相关文档并重新排序。聚类分析:将文本自动分组,发现隐藏的主题或模式。摘要挖掘:识别和提取文本的主要
- 美区电商商家境内邮寄怎么获取USPS可SCF折扣单
北***扣
大数据
以下是美区电商商家获取USPS可验资SCF折扣单的完整流程与策略:一、核心获取渠道亚马逊平台内置服务在卖家后台注册BuyShippingAPI,勾选USPSSCF服务条款,系统自动匹配平台提供的专属折扣(首重低至$0.8/单)。配置发货偏好时选择“USPSSmallPackageService”,匹配轻小件标准(重量1-10磅,尺寸≤1立方英尺)。第三方物流管理系统通过USPS2280
- graphpad prism显著性差异分析_「SPSS数据分析」SPSS差异分析(4)配对样本T检验的操作步骤...
weixin_39740283
graphpadprism显著性差异分析spss非线性回归分析步骤
上期我们详细讲解了独立样本T检验在SPSS中的详细操作和输出结果的解读:《SPSS差异分析(3)独立样本T检验的操作步骤及结果解读》独立样本T检验适用于两个完全独立的样本,之间没有任何相互关联,例如男性和女性;本科和专科等等。在实际研究中,有时候会遇到存在相互有关联的两组样本:例如某个指标干预前和干预后的两组值,此类样本属于自身配对样本;又例如2只特性完全一样的小鼠(性别,体重,身长等都一致),然
- 折线图标注显著性差异分析_「SPSS数据分析」SPSS非参数假设检验(3)单样本K-S检验...
冯爽妹
折线图标注显著性差异分析
单样本K-S检验是一种针对单个变量的数据分布进行的探索类别的检验方法。它不需要将数据分组,直接对原始数据的n个观测值进行检验,单样本K-S检验主要用于连续型数据。其中可检验分布类别有正态分布、平均分布、泊松分布、指数分布等。通常用到最多的就是检验是否服从正常性分布。下面,我们通过实际案例来详细讲解单样本K-S检验数据是否符合正态分布。我们搜集了472例减肥前体重数据,检验该数据整体上是否服从正态性
- Dunn’s test和Bonferroni校正的spss界面操作
一只土卜皿
spssspss
好的,用户现在问的是Dunn’stest和Bonferroni校正的SPSS界面操作。首先,我需要确认用户的需求。他们可能是在进行多重比较,比如在Kruskal-Wallis检验之后需要成对比较,而Dunn’stest正是用于这种情况的非参数方法。Bonferroni校正是用来控制多重比较的误差,避免假阳性结果。接下来,用户可能已经完成了Kruskal-Wallis检验,得到了显著的结果,现在需要
- 小样本百分比的统计检验
一只土卜皿
spssspss学习
当样本量小于40且需要比较占比(比例)的统计学差异时,需根据具体场景选择适当的方法。以下是针对小样本量的推荐方法和操作步骤:1.核心方法选择(1)两组占比比较(如A组20%vsB组40%)Fisher精确检验(Fisher’sExactTest)适用条件:样本量<40,或任一格期望频数<5。适用于2×2列联表(如两组+二分类结局)。SPSS操作:Analyze→DescriptiveStatist
- 2021年认证杯SPSSPRO杯数学建模B题(第二阶段)依巴谷星表中的毕星团求解全过程文档及程序
数模竞赛Paid answer
数学建模认证杯数据分析数学建模认证杯数学建模数据分析
2021年认证杯SPSSPRO杯数学建模B题依巴谷星表中的毕星团原题再现: 依巴谷卫星(HighPrecisionParallaxCollectingSatellite,缩写为Hip-parcos),全称为“依巴谷高精度视差测量卫星”,是欧洲空间局发射的一颗天体测量卫星,用以精确测量恒星的视差和自行。通过视差可以推断出恒星距地球的距离。 毕星团位于金牛座,是离地球最近的疏散星团。其成员星在30
- Python数据分析实战:物流业数据分析
AI天才研究院
AIAgent应用开发计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
文章目录Python数据分析实战:物流业数据分析1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系2.1物流数据类型2.2数据分析流程2.3常用分析方法2.4Python在数据分析中的角色2.5核心概念之间的联系3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1时间序列预测-ARIMA模型3.1.2聚类分析-K-means算法3.1.3分类算法-随机森
- Python爬虫实战:获取国家统计网最新消费数据并分析,为从业者做参考
ylfhpy
爬虫项目实战python爬虫开发语言javascript安全
一、系统定义与架构设计1.1系统定义本系统基于Python爬虫技术构建,实现国家数据网消费数据的自动化获取、清洗、分析及可视化。通过定义标准化的数据采集流程、反爬策略、数据分析模型,为经济研究、行业分析等场景提供数据支持。1.2架构设计数据采集层-->数据清洗层-->数据分析层-->可视化展示层↓↓↓↓代理池管理缺失值处理统计分析词云图请求调度类型转换聚类分析趋势图页面解析去重操作时间序列预测数据
- 决策树 连续变量_决策树在spss中的实现
DataStax
决策树连续变量
问题:spss关于决策树方法有哪些?回答:在SPSS中,关于决策树的方法介绍了四种,分别是CHAID、穷举CHAID、CRT、QUEST这四种。CHAID,就是卡方自动交互检验。顾名思义就是以卡方检验为判定准则。该方法要求解释变量和被解释变量都是分类变量,如果有连续变量,系统会将连续变量转化为分类变量;穷举CHAID,就是穷举卡方自动交互检验,是CHAID方法的“改进升级版”。CHAID在进行树的
- 26版SPSS操作教程(高级教程第一章)
Continue(延续)
大数据数据分析概率论
前言#经过20多天的坚持学习,本人也终于开启SPSS高级教程的副本了,茫茫长征路,需要我们一起共同去征服;#由于导师最近布置了学习SPSS这款软件的任务,因此想来平台和大家一起交流下学习经验,这期推送内容接上一次初级教程最后一期推送的学习笔记,希望能得到一些指正和帮助~粉丝及官方意见说明#针对官方爸爸的意见说的推送缺乏操作过程的数据案例文件澄清如下:1、操作演示的数据全部由我本人随意假设输进去的,
- 聚类分析的原理、常用算法及其应用
AI糊涂是福
人工智能算法机器学习人工智能
聚类分析的原理、常用算法及其应用一、聚类分析的基本原理(一)什么是聚类分析聚类分析是一种无监督学习方法,其目标是将数据集中的样本划分为若干个簇,每个簇包含相似的样本。聚类分析的核心思想是通过某种相似性度量(如距离)来衡量样本之间的相似性,并根据这些相似性将样本分组。(二)相似性度量在聚类分析中,相似性度量是关键。常用的相似性度量方法包括:欧氏距离:这是最常用的距离度量方法,适用于连续数值型数据。对
- 天生程序员鉴定宝典
百锦再@新空间
包罗万象python网络linuxdjangopygametornadoflask
文章目录第一章:程序员职业的本质解析1.1编程工作的核心特征1.2程序员职业的细分领域第二章:认知能力的适配性分析2.1逻辑思维能力的深度解析2.2抽象能力的层次分析第三章:性格特质的适配性研究3.1程序员性格特质的聚类分析3.2性格与职业发展的纵向研究第四章:学习能力的演进模式4.1程序员学习曲线的阶段性特征4.2持续学习的内在机制第五章:职业发展的路径优化5.1技术路线的能力演进5.2管理路线
- 基于 Google Earth Engine 的南京江宁区土地利用分类(K-Means 聚类)
AI_RSER
GEE基础教程kmeans算法机器学习GEE聚类遥感分类
一、引言其实利用GEE可以做的内容太多了,很多内容换一个区域,换一个时间段就是一篇本科毕业论文(设计),甚至拓展一下硕士也不是不行。本文将详细介绍如何使用GEE对南京江宁区的Landsat8地表反射率数据进行K-Means聚类分析,实现土地利用分类,并将结果可视化和导出。(后续有机会再给大家详细说一下如何完整的进行毕业论文的大纲和设计,甚至完成一篇十分简单的毕业论文。)二、代码实现2.1定义研究区
- 你需要掌握选择最佳聚类数目的这10个技巧!
weixin_33682790
人工智能python数据结构与算法
点击上方关注,AllinAI中国聚类是最常见的无监督机器学习问题之一。通过一些相似性度量方法把一些观测值分成同一类。共有5类聚类方法:层次法划分法(k-means,PAM,CLARA)基于密度的方法基于模型的方法模糊聚类起初,我写这篇文章主要是由于我阅读了关于clustree包,dendextend文档以及由AlboekadelKassambara撰写的factoextra编写的关于聚类分析的实用
- 数据挖掘技术与应用课程论文——数据挖掘中的聚类分析方法及其应用研究
小李独爱秋
数据挖掘技术与应用数据挖掘人工智能聚类算法
数据挖掘中的聚类分析方法及其应用研究摘要聚类分析是数据挖掘技术中的一个重要组成部分,它通过将数据集中的对象划分为多个组或簇,使得同一簇内的对象具有较高的相似性,而不同簇之间的对象具有较低的相似性。本文系统地研究了数据挖掘中的多种聚类分析方法及其应用。首先,介绍了聚类分析的基础理论,包括聚类分析的定义和对聚类算法性能的要求。接着,详细探讨了基于划分、层次、密度、网格和模型的五种主要聚类方法,并分析了
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite